
DBMSBenchmarker
Release 0.1

Patrick Erdelt

Jan 18, 2022

TABLE OF CONTENTS:

1 Overview 3

2 Example: TPC-H 5
2.1 Prerequisites . 5
2.2 Perform Benchmark . 6

2.2.1 Evaluate Results in Dashboard . 6
2.3 Where to go . 6

3 Concepts 7
3.1 Experiment . 7
3.2 Single Query . 7
3.3 Basic Parameters . 7
3.4 Basic Metrics . 8
3.5 Comparison . 9
3.6 Monitoring Hardware Metrics . 9
3.7 Evaluation . 10

3.7.1 Aggregation Functions . 10

4 Usage 13
4.1 Featured Usage . 13
4.2 Featured Parameters . 13

5 Options 15
5.1 Command Line Options and Configuration . 15

5.1.1 Result folder . 16
5.1.2 Config folder . 17
5.1.3 Connection File . 17
5.1.4 Monitoring . 18
5.1.5 Query File . 19
5.1.6 Extended Query File . 19

5.1.6.1 SQL Dialects . 20
5.1.6.2 Connection Management . 20
5.1.6.3 Connection Latency . 21
5.1.6.4 Results and Comparison . 21

5.1.7 Randomized Query File . 21
5.1.8 Query List . 22
5.1.9 Query . 23
5.1.10 Connection . 23
5.1.11 Generate evaluation . 23
5.1.12 Debug . 23

i

5.1.13 Sleep . 23
5.1.14 Batch . 24
5.1.15 Verbosity Level . 24
5.1.16 Working querywise or connectionswise . 24
5.1.17 Client processes . 24
5.1.18 Random Seed . 25
5.1.19 Subfolders . 25
5.1.20 Delay start . 25

6 Evaluation 27
6.1 Featured Evaluations . 27

6.1.1 Informations about DBMS . 28
6.1.1.1 Throughput and Latency . 29

6.1.2 Global Metrics . 29
6.1.2.1 Latency and Throughput . 29
6.1.2.2 Average Ranking . 29
6.1.2.3 Time of Ingest per DBMS . 29
6.1.2.4 Hardware Metrics . 29
6.1.2.5 Host Metrics . 30

6.1.3 Drill-Down Timers . 30
6.1.3.1 Relative Ranking based on Times . 30
6.1.3.2 Average Times . 30

6.1.4 Slice Timers . 30
6.1.4.1 Heatmap of Factors . 30

6.1.5 Drill-Down Queries . 30
6.1.5.1 Total Times . 30
6.1.5.2 Normalized Total Times . 31
6.1.5.3 Throughputs . 31
6.1.5.4 Latencies . 31
6.1.5.5 Sizes of Result Sets . 31
6.1.5.6 Errors . 31
6.1.5.7 Warnings . 31

6.1.6 Slice Queries . 31
6.1.6.1 Latency and Throughput per Query . 31
6.1.6.2 Hardware Metrics per Query . 32
6.1.6.3 Timers Per Query . 32

6.1.7 Slice Queries and Timers . 32
6.1.7.1 Statistics Table . 32
6.1.7.2 Plot of Values . 32
6.1.7.3 Boxplot of Values . 32
6.1.7.4 Histogram of Values . 32

6.1.8 Further Data . 33
6.1.8.1 Result Sets per Query . 33
6.1.8.2 All Benchmark Times . 33
6.1.8.3 All Errors . 33
6.1.8.4 All Warnings . 33
6.1.8.5 Initialization Scripts . 33
6.1.8.6 Bexhoma Workflow . 33

7 Dashboard 35
7.1 Start . 35

7.1.1 Select Experiment . 36
7.2 Concept . 36

7.2.1 Data . 36

ii

7.2.2 Graph Panels . 36
7.2.2.1 Graph Types . 36

7.3 Menu . 37
7.4 Favorites . 37
7.5 Settings . 37
7.6 Filter . 38

8 Inspector 39
8.1 Get General Informations and Evaluations . 39
8.2 Get Informations and Evaluations for a Specific DBMS and Query: 40
8.3 Run some Isolated Queries . 41

9 Use Cases 43
9.1 Benchmark 1 Query in 1 DBMS . 43
9.2 Compare 2 Queries in 1 DBMS . 44
9.3 Compare 2 Databases in 1 DBMS . 45
9.4 Compare 1 Query in 2 DBMS . 47

10 Scenarios 49
10.1 Many Users / Few, Complex Queries . 49
10.2 Few Users / Several simple Queries . 50
10.3 Updated Database . 51

11 Example Runs 53
11.1 Run benchmarks . 53
11.2 Run benchmarks and generate evaluations . 54
11.3 Read stored benchmarks . 54
11.4 Generate evaluation of stored benchmarks . 54
11.5 Continue benchmarks . 54

11.5.1 Continue benchmarks for more queries . 54
11.5.2 Continue benchmarks for more connections . 54

11.6 Rerun benchmarks . 55
11.6.1 Rerun benchmarks for one query . 55
11.6.2 Rerun benchmarks for one connection . 55

12 DBMS-Benchmarker 57
12.1 Key Features . 57
12.2 Installation . 58
12.3 Basic Usage . 58

12.3.1 Configuration . 58
12.3.2 Perform Benchmark . 59
12.3.3 Evaluate Results in Dashboard . 59

12.4 Benchmarking in a Kubernetes Cloud . 59
12.5 Limitations . 59
12.6 References . 60

iii

iv

DBMSBenchmarker, Release 0.1

{include} ../README.md

TABLE OF CONTENTS: 1

DBMSBenchmarker, Release 0.1

2 TABLE OF CONTENTS:

CHAPTER

ONE

OVERVIEW

This documentation contains

• an example of how to perform a TPC-H-like Benchmark from a command line

• an illustration of the concepts

• an illustration of the evaluations

• a description of the options and configurations

• more extensive examples of using the cli tool

• some use-cases and test scenarios

• examples of how to use the interactive inspector

• examples of how to use the interactive dashboard

3

Example-TPC-H.html
Concept.html
Evaluations.html
Options.html
Usage.html
Options.html#command-line-options-and-configuration
Usecases.html#use-cases
Usecases.html#scenarios
Inspection.html
Dashboard.html

DBMSBenchmarker, Release 0.1

4 Chapter 1. Overview

CHAPTER

TWO

EXAMPLE: TPC-H

This example shows how to benchmark 22 reading queries Q1-Q22 derived from TPC-H in MySQL

The query file is derived from the TPC-H and as such is not comparable to published TPC-H results, as
the query file results do not comply with the TPC-H Specification.

Official TPC-H benchmark - http://www.tpc.org/tpch

Content:
• Prerequisites

• Perform Benchmark

• Evaluate Results in Dashboard

• Where to go

2.1 Prerequisites

We need

• a local instance of MySQL

– having a database database containing the TPC-H data of SF=1

– access rights for user / password: username/password

• a suitable MySQL JDBC driver jar file

• JDK 8 installed

If necessary, adjust the settings in the file example/connections.py:

[
{
'name': "MySQL",
'alias': "Some DBMS",
'version': "CE 8.0.13",
'docker': 'MySQL',
'docker_alias': "DBMS A",
'dialect': "MySQL",
'hostsystem': {'node': 'localhost'},
'info': "This is an example: MySQL on localhost",
'active': True,
'JDBC': {

(continues on next page)

5

http://www.tpc.org/tpch

DBMSBenchmarker, Release 0.1

(continued from previous page)

'driver': "com.mysql.cj.jdbc.Driver",
'url': "jdbc:mysql://localhost:3306/database",
'auth': ["username", "password"],
'jar': "mysql-connector-java-8.0.13.jar"

},
},

]

2.2 Perform Benchmark

Run the command:

python benchmark.py run -e yes -b -f example/tpch

• -e yes: This will precompile some evaluations and generate the timer cube.

• -b: This will suppress some output

• -f: This points to a folder having the configuration files.

For more options, see the documentation

After benchmarking has been finished will see a message like

Experiment <code> has been finished

The script has created a result folder in the current directory containing the results. <code> is the name of the folder.

2.2.1 Evaluate Results in Dashboard

Run the command:

python dashboard.py

This will start the evaluation dashboard at localhost:8050. Visit the address in a browser and select the experiment
<code>.

2.3 Where to go

• Different DBMS

• Add metadata

• Use Bexhoma

• SF

6 Chapter 2. Example: TPC-H

Options.md#command-line-options-and-configuration

CHAPTER

THREE

CONCEPTS

3.1 Experiment

An experiment is organized in queries. A query is a statement, that is understood by a Database Management System
(DBMS).

3.2 Single Query

A benchmark of a query consists of these steps:

1. Establish a connection between client and server This uses jaydebeapi.connect() (and also creates a cursor
- time not measured)

2. Send the query from client to server and

3. Execute the query on server These two steps use execute() on a cursor of the JDBC connection

4. Transfer the result back to client This uses fetchall() on a cursor of the JDBC connection

5. Close the connection This uses close() on the cursor and the connection

The times needed for steps connection (1.), execution (2. and 3.) and transfer (4.) are measured on the client side. A
unit of connect, send, execute and transfer is called a run. Connection time will be zero if an existing connection is
reused. A sequence of runs between establishing and discarding a connection is called a session.

3.3 Basic Parameters

A basic parameter of a query is the number of runs (units of send, execute, transfer). To configure sessions it is also
possible to adjust

• the number of runs per connection (session length, to have several sequential connections) and

• the number of parallel connections (to simulate several simultanious clients)

• a timeout (maximum lifespan of a connection)

• a delay for throttling (waiting time before each connection or execution)

for the same query.

Parallel clients are simulated using the pool.apply_async()method of a Pool object of the module multiprocessing.
Runs and their benchmark times are ordered by numbering.

7

https://docs.python.org/3/library/multiprocessing.html

DBMSBenchmarker, Release 0.1

Moreover we can randomize a query, such that each run will look slightly different. This means we exchange a part of
the query for a random value.

3.4 Basic Metrics

We have several timers to collect timing information:

• timerConnection This timer gives the time in ms and per run. It measures the time it takes to establish a JDBC
connection. Note that if a run reuses an established connection, this timer will be 0 for that run.

• timerExecution This timer gives the time in ms and per run. It measures the time between sending a SQL
command and receiving a result code via JDBC.

• timerTransfer This timer gives the time in ms and per run. Note that if a run does not transfer any result set (a
writing query or if we suspend the result set), this timer will be 0 for that run.

• timerRun This timer gives the time in ms and per run. That is the sum of timerConnection, timerExecution and
timerTransfer. Note that connection time is 0, if we reuse an established session, and transfer time is 0, if we do
not transfer any result set.

• timerSession This timer gives the time in ms and per session. It aggregates all runs of a session and sums up
their timerRuns. A session starts with establishing a connection and ends when the connection is disconnected.

The benchmark times of a query are stored in csv files (optional pickeled pandas dataframe): For connection, execution
and transfer. The columns represent DBMS and each row contains a run.

We also measure and store the total time of the benchmark of the query, since for parallel execution this differs from
the sum of times based on timerRun. Total time means measurement starts before first benchmark run and stops
after the last benchmark run has been finished. Thus total time also includes some overhead (for spawning a pool of
subprocesses, compute size of result sets and joining results of subprocesses). Thus the sum of times is more of an
indicator for performance of the server system, the total time is more of an indicator for the performance the client user
receives.

We also compute for each query and DBMS

• Latency: Measured Time

• Throughput:
– Number of runs per total time

– Number of parallel clients per mean time

In the end we have

• Per DBMS: Total time of experiment

• Per DBMS and Query:

– Time per session

– Time per run

– Time per run, split up into: connection / execution / data transfer

– Latency and Throughputs per run

– Latency and Throughputs per session

Additionally error messages and timestamps of begin and end of benchmarking a query are stored.

8 Chapter 3. Concepts

DBMSBenchmarker, Release 0.1

3.5 Comparison

We can specify a dict of DBMS. Each query will be sent to every DBMS in the same number of runs.

This also respects randomization, i.e. every DBMS receives exactly the same versions of the query in the same order.
We assume all DBMS will give us the same result sets. Without randomization, each run should yield the same result
set. This tool can check these assumptions automatically by comparison. The resulting data table is handled as a list
of lists and treated by this:

restrict precision
data = [[round(float(item), int(query.restrict_precision)) if tools.convertToFloat(item)␣
→˓== float else item for item in sublist] for sublist in data]
sort by all columns
data = sorted(data, key=itemgetter(*list(range(0,len(data[0])))))
size of result
size = int(df.memory_usage(index=True).sum())
hash of result
columnnames = [[i[0].upper() for i in connection.cursor.description]]
hashed = columnnames + [[hashlib.sha224(pickle.dumps(data)).hexdigest()]]

Result sets of different runs (not randomized) and different DBMS can be compared by their sorted table (small data
sets) or their hash value or size (bigger data sets). In order to do so, result sets (or their hash value or size) are stored
as lists of lists and additionally can be saved as csv files or pickled pandas dataframes.

3.6 Monitoring Hardware Metrics

To make hardware metrics available, we must provide an API URL for a Prometheus Server. The tool collects metrics
from the Prometheus server with a step size of 1 second.

The requested interval matches the interval a specific DBMS is queried. To increase expressiveness, it is possible to
extend the scraping interval by n seconds at both ends. In the end we have a list of per second values for each query
and DBMS. We may define the metrics in terms of promql. Metrics can be defined per connection.

Example:

'title': 'CPU Memory [MB]'
'query': 'container_memory_working_set_bytes'

'title': 'CPU Memory Cached [MB]'
'query': 'container_memory_usage_bytes'

'title': 'CPU Util [%]'
'query': 'sum(irate(container_cpu_usage_seconds_total[1m]))'

'title': 'CPU Throttle [%]'
'query': 'sum(irate(container_cpu_cfs_throttled_seconds_total[1m]))'

'title': 'CPU Util Others [%]'
'query': 'sum(irate(container_cpu_usage_seconds_total{id!="/"}[1m]))'

'title': 'Net Rx [b]'
'query': 'sum(container_network_receive_bytes_total{)'

(continues on next page)

3.5. Comparison 9

Options.html#connection-file

DBMSBenchmarker, Release 0.1

(continued from previous page)

'title': 'Net Tx [b]'
'query': 'sum(container_network_transmit_bytes_total{)'

'title': 'FS Read [b]'
'query': 'sum(container_fs_reads_bytes_total)'

'title': 'FS Write [b]'
'query': 'sum(container_fs_writes_bytes_total)'

'title': 'GPU Util [%]'
'query': 'DCGM_FI_DEV_GPU_UTIL{UUID=~"GPU-4d1c2617-649d-40f1-9430-2c9ab3297b79"}'

'title': 'GPU Power Usage [W]'
'query': 'DCGM_FI_DEV_POWER_USAGE{UUID=~"GPU-4d1c2617-"}'

'title': 'GPU Memory [MiB]'
'query': 'DCGM_FI_DEV_FB_USED{UUID=~"GPU-4d1c2617-"}'

Note this expects monitoring to be installed properly and naming to be appropriate. See https://github.com/
Beuth-Erdelt/Benchmark-Experiment-Host-Manager for a working example and more details.

Note this has limited validity, since metrics are typically scraped only on a basis of several seconds. It works best with
a high repetition of the same query.

3.7 Evaluation

As a result we obtain measured times in milliseconds for the query processing parts: connection, execution, data
transfer.

These are described in three dimensions: number of run, number of query and configuration. The configuration di-
mension can consist of various nominal attributes like DBMS, selected processor, assigned cluster node, number of
clients and execution order. We also can have various hardware metrics like CPU and GPU utilization, CPU throttling,
memory caching and working set. These are also described in three dimensions: Second of query execution time,
number of query and number of configuration.

All these metrics can be sliced or diced, rolled-up or drilled-down into the various dimensions using several aggregation
functions for evaluation.

3.7.1 Aggregation Functions

Currently the following statistics may be computed per dimension:

• Sensitive to outliers

– Arithmetic mean

– Standard deviation

– Coefficient of variation

• Insensitive to outliers

– Median - percentile 50 (Q2)

– Interquartile range - Q3-Q1

10 Chapter 3. Concepts

https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Manager
https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Manager

DBMSBenchmarker, Release 0.1

– Quartile coefficient of dispersion

• First

• Last

• Minimum

• Maximum

• Range (Maximum - Minimum)

• Sum

• Geometric Mean

• percentile 25 (Q1)

• percentile 75 (Q3)

• percentile 90 - leave out highest 10%

• percentile 95 - leave out highest 5%

In the complex configuration dimension it can be interesting to aggregate to groups like same DBMS or CPU type.

3.7. Evaluation 11

DBMSBenchmarker, Release 0.1

12 Chapter 3. Concepts

CHAPTER

FOUR

USAGE

4.1 Featured Usage

This tool can be used to

• run benchmarks

• continue aborted benchmarks

• rerun benchmarks for one fixed query and/or one fixed DBMS

• compare result sets obtained from different runs and dbms

• add benchmarks for more queries or for more DBMS

• read finished benchmarks

Basically this can be done running dbmsbenchmarker run or dbmsbenchmarker continue with additional param-
eters.

4.2 Featured Parameters

The lists of DBMS and queries are given in config files in dict format.

Benchmarks can be parametrized by

• number of benchmark runs: Is performance stable across time?

• number of benchmark runs per connection: How does reusing a connection affect performance?

• number of warmup and cooldown runs, if any: How does (re)establishing a connection affect performance?

• number of parallel clients: How do multiple user scenarios affect performance?

• optional list of timers (currently: connection, execution, data transfer, run and session): Where does my time go?

• sequences of queries: How does sequencing influence performance?

• optional comparison of result sets: Do I always receive the same results sets?

Benchmarks can be randomized (optionally with specified seeds for reproducible results) to avoid caching side effects
and to increase variety of queries by taking samples of arbitrary size from a

• list of elements

• dict of elements (one-to-many relations)

• range of integers

13

DBMSBenchmarker, Release 0.1

• range of floats

• range of days

• range of (first of) months

• range of years

This is inspired by TPC-H and TPC-DS - Decision Support Benchmarks.

14 Chapter 4. Usage

http://www.tpc.org/tpch/
http://www.tpc.org/tpcds/

CHAPTER

FIVE

OPTIONS

5.1 Command Line Options and Configuration

How to configure the benchmarker can be illustrated best by looking at the source code of the command line tool, which
will be described in the following.

python3 benchmark.py -h

usage: benchmark.py [-h] [-d] [-b] [-qf QUERY_FILE] [-cf CONNECTION_FILE] [-q QUERY] [-c␣
→˓CONNECTION] [-ca CONNECTION_ALIAS] [-l LATEX_TEMPLATE] [-f CONFIG_FOLDER] [-r RESULT_
→˓FOLDER] [-g {no,yes}] [-e {no,yes}] [-w {query,connection}] [-a] [-u [UNANONYMIZE␣
→˓[UNANONYMIZE ...]]] [-p NUMPROCESSES] [-s SEED] [-cs] [-ms MAX_SUBFOLDERS] [-sl SLEEP]

[-st START_TIME] [-sf SUBFOLDER] [-vq] [-vs] [-vr] [-pn NUM_RUN] [-
→˓m] [-mps]

{run,read,continue}

A benchmark tool for RDBMS. It connects to a given list of RDBMS via JDBC and runs a␣
→˓given list benchmark queries. Optionally some reports are generated.

positional arguments:
{run,read,continue} run benchmarks and save results, or just read benchmark results␣

→˓from folder, or continue with missing benchmarks only

optional arguments:
-h, --help show this help message and exit
-d, --debug dump debug informations
-b, --batch batch mode (more protocol-like output), automatically on for␣

→˓debug mode
-qf QUERY_FILE, --query-file QUERY_FILE

name of query config file
-cf CONNECTION_FILE, --connection-file CONNECTION_FILE

name of connection config file
-q QUERY, --query QUERY

number of query to benchmark
-c CONNECTION, --connection CONNECTION

name of connection to benchmark
-ca CONNECTION_ALIAS, --connection-alias CONNECTION_ALIAS

alias of connection to benchmark
-f CONFIG_FOLDER, --config-folder CONFIG_FOLDER

folder containing query and connection config files. If set, the␣
→˓names connections.config and queries.config are assumed automatically.

(continues on next page)

15

../benchmark.py

DBMSBenchmarker, Release 0.1

(continued from previous page)

-r RESULT_FOLDER, --result-folder RESULT_FOLDER
folder for storing benchmark result files, default is given by␣

→˓timestamp
-e {no,yes}, --generate-evaluation {no,yes}

generate new evaluation file
-w {query,connection}, --working {query,connection}

working per query or connection
-p NUMPROCESSES, --numProcesses NUMPROCESSES

Number of parallel client processes. Global setting, can be␣
→˓overwritten by connection. If None given, half of all available processes is taken
-s SEED, --seed SEED random seed
-cs, --copy-subfolder

copy subfolder of result folder
-ms MAX_SUBFOLDERS, --max-subfolders MAX_SUBFOLDERS

maximum number of subfolders of result folder
-sl SLEEP, --sleep SLEEP

sleep SLEEP seconds before going to work
-st START_TIME, --start-time START_TIME

sleep until START-TIME before beginning benchmarking
-sf SUBFOLDER, --subfolder SUBFOLDER

stores results in a SUBFOLDER of the result folder
-vq, --verbose-queries

print every query that is sent
-vs, --verbose-statistics

print statistics about query that have been sent
-vr, --verbose-results

print result sets of every query that have been sent
-pn NUM_RUN, --num-run NUM_RUN

Parameter: Number of executions per query
-m, --metrics collect hardware metrics per query
-mps, --metrics-per-stream

collect hardware metrics per stream

5.1.1 Result folder

This optional argument is the name of a folder.

If this folder contains results, results saved inside can be read or benchmarks saved there can be continued. Example:
-r /tmp/dbmsresults/1234/ contains benchmarks of code 1234.

If this folder does not contain results, a new subfolder is generated. It’s name is set automatically to some number
derived from current timestamp. Results and reports are stored there. Input files for connections and queries are copied
to this folder. Example: -r /tmp/dbmsresults/, and a subfolder, say 1234, will be generated containing results.

16 Chapter 5. Options

DBMSBenchmarker, Release 0.1

5.1.2 Config folder

Name of folder containing query and connection config files. If set, the names connections.config and queries.
config are assumed automatically.

5.1.3 Connection File

Contains infos about JDBC connections.

Example for CONNECTION_FILE:

[
{
'name': "MySQL",
'version': "CE 8.0.13",
'info': "This uses engine innodb",
'active': True,
'alias': "DBMS A",
'docker': "MySQL",
'docker_alias': "DBMS A",
'dialect': "MySQL",
'timeload': 100,
'priceperhourdollar': 1.0,
'JDBC': {
'driver': "com.mysql.cj.jdbc.Driver",
'url': "jdbc:mysql://localhost:3306/database",
'auth': ["username", "password"],
'jar': "mysql-connector-java-8.0.13.jar"

},
'connectionmanagement': {
'timeout': 600,
'numProcesses': 4,
'runsPerConnection': 5

},
'hostsystem': {
'RAM': 61.0,
'CPU': 'Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz\n',
'Cores': '8\n',
'host': '4.4.0-1075-aws\n',
'disk': '82G\n',
'CUDA': ' NVIDIA-SMI 410.79 Driver Version: 410.79 CUDA Version: 10.0',
'instance': 'p3.2xlarge'

},
'monitoring': {
'shift': 0,
'extend': 20,
'prometheus_url': 'http://127.0.0.1:9090/api/v1/',
'metrics': {
'total_cpu_memory': {
'query': 'container_memory_working_set_bytes{job="monitor-node"}/1024/1024',
'title': 'CPU Memory [MiB]'

}
}

(continues on next page)

5.1. Command Line Options and Configuration 17

DBMSBenchmarker, Release 0.1

(continued from previous page)

}
},
]

• name: References the connection

• version and info: Just info texts for implementation in reports

• active: Use this connection in benchmarking and reporting (optional, default True)

• alias: Alias for anonymized reports (optional, default is a random name)

• docker: Name of the docker image. This helps aggregating connections using the same docker image.

• docker_alias: Anonymized name of the docker image. This helps aggregating connections using the same
docker image in anonymized reports.

• alias: Alias for anonymized reports (optional default is a random name)

• dialect: Key for (optional) alternative SQL statements in the query file

• driver, url, auth, jar: JDBC data

• Additional information useful for reporting and also used for computations

– timeload: Time for ingest (in milliseconds), because not part of the benchmark

– priceperhourdollar: Used to compute total cost based on total time (optional)

• connectionmanagement: Parameter for connection management. This overwrites general settings made in the
query config and can be overwritten by query-wise settings made there.

– timeout: Maximum lifespan of a connection. Default is None, i.e. no limit.

– numProcesses: Number of parallel client processes. Default is 1.

– runsPerConnection: Number of runs performed before connection is closed. Default is None, i.e. no
limit.

• hostsystem: Describing information for report in particular about the host system. This can be written auto-
matically by https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Manager

• monitoring: We might also add information about fetching monitoring metrics.

– prometheus_url: URL to API of Prometheus instance monitoring the system under test

– shift: Shifts the fetched interval by n seconds to the future.

– extend: Extends the fetched interval by n seconds at both ends.

5.1.4 Monitoring

The parameter --metrics can be used to activate fetching metrics from a Prometheus server. In the connection.
config we may insert a section per connection about where to fetch these metrics from and which metrics we want to
obtain.

More information about monitoring and metrics can be found here: https://github.com/Beuth-Erdelt/
Benchmark-Experiment-Host-Manager/blob/master/docs/Monitoring.html

The parameter --metrics-per-stream does the same, but collects the metrics per stream - not per query. This is
useful when queries are very fast.

18 Chapter 5. Options

https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Manager
https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Manager/blob/master/docs/Monitoring.html
https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Manager/blob/master/docs/Monitoring.html

DBMSBenchmarker, Release 0.1

5.1.5 Query File

Contains the queries to benchmark.

Example for QUERY_FILE:

{
'name': 'Some simple queries',
'intro': 'Some describing text about this benchmark test setup',
'info': 'It runs on a P100 GPU',
'factor': 'mean',
'queries':
[
{
'title': "Count all rows in test",
'query': "SELECT COUNT(*) FROM test",
'delay': 0,
'numRun': 10,

},
]

}

• name: Name of the list of queries

• intro: Introductional text for reports

• info: Short info about the current experiment

• factor: Determines the measure for comparing performances (optional). Can be set to mean or median or
relative. Default is mean.

• query: SQL query string

• title: Title of the query

• delay: Number of seconds to wait before each execution statement. This is for throtteling. Default is 0.

• numRun: Number of runs of this query for benchmarking

Such a query will be executed 10 times and the time of execution will be measured each time.

5.1.6 Extended Query File

Extended example for QUERY_FILE:

{
'name': 'Some simple queries',
'intro': 'This is an example workload',
'info': 'It runs on a P100 GPU',
'connectionmanagement': {
'timeout': 600,
'numProcesses': 4,
'runsPerConnection': 5

},
'queries':
[
{

(continues on next page)

5.1. Command Line Options and Configuration 19

DBMSBenchmarker, Release 0.1

(continued from previous page)

'title': "Count all rows in test",
'query': "SELECT COUNT(*) c FROM test",
'DBMS': {
'MySQL': "SELECT COUNT(*) AS c FROM test"

}
'delay': 1,
'numRun': 10,
'connectionmanagement': {
'timeout': 100,
'numProcesses': 1,
'runsPerConnection': None

},
'timer':
{
'connection':
{
'active': True,
'delay': 0

},
'datatransfer':
{
'active': True,
'sorted': True,
'compare': 'result',
'store': 'dataframe',
'precision': 4,

}
}

},
]

}

5.1.6.1 SQL Dialects

The DBMS key allows to specify SQL dialects. All connections starting with the key in this dict with use the specified
alternative query. In the example above, for instance a connection ‘MySQL-InnoDB’ will use the alternative. Option-
ally at the definition of the connections an attribute dialect can be used. For example MemSQL may use the dialect
MySQL.

5.1.6.2 Connection Management

The first connectionmanagement options set global values valid for all DBMS. This can be overwritten by the settings
in the connection config. The second connectionmanagement is fixed valid for this particular query and cannot be
overwritten.

• timeout: Maximum lifespan of a connection. Default is None, i.e. no limit.

• numProcesses: Number of parallel client processes. Default is 1.

• runsPerConnection: Number of runs performed before connection is closed. Default is None, i.e. no limit.

20 Chapter 5. Options

DBMSBenchmarker, Release 0.1

5.1.6.3 Connection Latency

The connection timer will also measure the time for establishing a connection. It is possible to force sleeping before
each establishment by using delay (in seconds). Default is 0.

5.1.6.4 Results and Comparison

The datatransfer timer will also measure the time for data transfer. The tool can store retrieved data to compare
different queries and dbms. This helps to be sure different approaches yield the same results. For example the query
above should always return the same number of rows in table test.

compare can be used to compare result sets obtained from different runs and dbms. compare is optional and can be

• result: Compare complete result set. Every cell is trimmed. Floats can be rounded to a given precision
(decimal places). This is important for example for comparing CPU and GPU based DBMS.

• hash: Compare hash value of result set.

• size: Compare size of result set.

If comparison detects any difference in result sets, a warning is generated.

The result set can optionally be sorted by each column before comparison by using sorted. This helps avoid mismatch
due to different orderings in the received sets.

Note that comparing result sets necessarily means they have to be stored, so result should only be used for small
data sets. The parameter store commands the tool to keep the result set and is automatically set to True if any of the
above is used. It can be set to False to command the tool to fetch the result set and immediately forget it. This helps
measuring the time for data transfer without having to store all result sets, which in particular for large result sets and
numbers of runs can exhauste the RAM. Setting store can also yield the result sets to be stored in extra files. Possible
values are: 'store': ['dataframe', 'csv']

5.1.7 Randomized Query File

Example for QUERY_FILE with randomized parameters:

{
'name': 'Some simple queries',
'defaultParameters': {'SF': '10'},
'queries':
[
{
'title': "Count rows in test",
'query': "SELECT COUNT(*) FROM test WHERE name = {NAME}",
'parameter': {
'NAME': {
'type': "list",
'size': 1,
'range': ["AUTOMOBILE","BUILDING","FURNITURE","MACHINERY","HOUSEHOLD"]

}
},
'numWarmup': 5,
'numRun': 10,

},
]

}

5.1. Command Line Options and Configuration 21

DBMSBenchmarker, Release 0.1

A parameter contain of a name NAME, a range (list), a size(optional, default 1) and a type, which can be

• list: list of values - random element

• integer: 2 integers - random value in between

• float: 2 floats - random value in between

• date: 2 dates in format ‘YYYY-mm-dd’ - random date in between

• firstofmonth: 2 dates in format ‘YYYY-mm-dd’ - first of random month in between

• year: 2 years as integers - random year in between

• hexcode: 2 integers - random value in between as hexcode

For each benchmark run, {NAME} is replaced by a (uniformly) randomly chosen value in the range and type given
above. By size we can specify the size of the sample (without replacement). If set, each generated value will receive
a {NAME} concatenated with the number of the sample. Python3’s format() is used for replacement. The values are
generated once per query. This means if a query is rerun or run for different dbms, the same list of values is used.

Example:

'NAME': {
'type': "integer",
'range': [1,100]

},

in a query with numWarmup=5 and numRun=10 will generate a random list of 10 integers between 1 and 100. Each time
the benchmark for this query is done, the same 10 numbers are used.

'NAME': {
'type': "integer",
'size': 2,
'range': [1,100]

},

in a query with numWarmup=5 and numRun=10 will generate a random list of 10 pairs of integers between 1 and
100. These pairs will replace {NAME1} and {NAME2} in the query. Both elements of each pair will be different from
eachother. Each time the benchmark for this query is done, the same 10 pairs are used.

defaultParameters can be used to set parameters that hold for the complete workload.

5.1.8 Query List

Example for QUERY_FILE with a query that is a sequence:

{
'name': 'Some simple queries',
'queries':
[
{
'title': "Sequence",
'queryList': [2,3,4,5],
'connectionmanagement': {
'timeout': 600,
'numProcesses': 1,
'runsPerConnection': 4

(continues on next page)

22 Chapter 5. Options

DBMSBenchmarker, Release 0.1

(continued from previous page)

},
'numRun': 12,

},
]

}

This query does not have a query attribute, but an attribute queryList. It is a list of other queries, here number 2,
3, 4 and 5. The 12 benchmark runs are done by running these four queries one after the other, three times in total.
Here, we reconnect each time the sequence is through (runsPerConnection = 4) and we simulate one parallel client
(numProcesses = 1).

This also respects randomization, i.e. every DBMS receives exactly the same versions of the queries in the same order.

5.1.9 Query

This parameter sets reading or running benchmarks to one fixed query. For mode=run this means the fixed query is
benchmarked (again), no matter if benchmarks already exist for this query. For mode=continue this means missing
benchmarks are performed for this fixed query only. If reports are about to be generated, only the report for this fixed
query is generated. This does not apply to the latex reporter, which always generates a complete report due to technical
reasons. Queries are numbered starting at 1.

5.1.10 Connection

This parameter sets running benchmarks to one fixed DBMS (connection). For mode=run this means the fixed DBMS is
benchmarked (again), no matter if benchmarks already exist for it. For mode=continue this means missing benchmarks
are performed for this fixed DBMS only. If reports are about to be generated, all reports involving this fixed DBMS are
generated. Connections are called by name.

5.1.11 Generate evaluation

If set to yes, an evaluation file is generated. This is a JSON file containing most of the evaluations. It can be accessed
most easily using the inspection class or the interactive dashboard.

5.1.12 Debug

This flag activates output of debug infos.

5.1.13 Sleep

Time in seconds to wait before starting to operate. This is handy when we want to wait for other systems (e.g. a DBMS)
to startup completely.

5.1. Command Line Options and Configuration 23

Evaluations.html

DBMSBenchmarker, Release 0.1

5.1.14 Batch

This flag changes the output slightly and should be used for logging if script runs in background. This also means
reports are generated only at the end of processing. Batch mode is automatically turned on if debug mode is used.

5.1.15 Verbosity Level

Using the flags -vq means each query that is sent is dumped to stdout. Using the flags -vs means after each query that
has been finished, some statistics are dumped to stdout.

5.1.16 Working querywise or connectionswise

This options sets if benchmarks are performed per query (one after the other is completed) or per connection (one after
the other is completed).

This means processing -w query is

• loop over queries q

– loop over connections c

∗ making n benchmarks for q and c

∗ compute statistics

∗ save results

∗ generate reports

and processing -w connection is

• loop over connections c

– loop over queries q

∗ making n benchmarks for q and c

∗ compute statistics

∗ save results

∗ generate reports

5.1.17 Client processes

This tool simulates parallel queries from several clients. The option -p can be used to change the global setting for
the number of parallel processes. Moreover each connection can have a local values for this parameter. If nothing is
specified, the default value is used, which is half of the number of processors.

24 Chapter 5. Options

DBMSBenchmarker, Release 0.1

5.1.18 Random Seed

The option -s can be used to specify a random seed. This should guarantee reproducible results for randomized queries.

5.1.19 Subfolders

If the flag --copy-subfolder is set, connection and query configuration will be copied from an existing result folder
to a subfolder. The name of the subfolder can be set via --subfolder. These flags can be used to allow parallel
quering of independent dbmsbenchmarker: Each will write in an own subfolder. These partial results can be merged
using the merge.py command line tool. The normal behaviour is: If we run the same connection twice, the results of
the first run will be overwritten. Since we might query the same connection in these instances, the subfolders will be
numbered automatically. Using MAX_SUBFOLDERSwe can limit the number of subfolders that are allowed. Example: -r
/tmp/dbmsresults/1234/ -cs -sf MySQL will continue the benchmarks of folder /tmp/dbmsresults/1234/
by creating a folder /tmp/dbmsresults/1234/MySQL-1. If that folder already exists, /tmp/dbmsresults/1234/
MySQL-2 will be used etc.

This is in particular used by https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Manager for jobs of par-
allel benchmarker.

5.1.20 Delay start

The parameter --sleep can be used to set a start time. DBMSBenchmarker will wait until the given time is reached.

This is in particular used by https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Manager for synching jobs
of parallel benchmarker.

5.1. Command Line Options and Configuration 25

https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Manager
https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Manager

DBMSBenchmarker, Release 0.1

26 Chapter 5. Options

CHAPTER

SIX

EVALUATION

After an experiment has finished, the results can be evaluated

• with an interactive dashboard

• in a Latex report containing most of the results

• with an interactive inspection module

There is an evaluator class, which collects most of the (numerical) evaluations and provides them as an evaluation
dict.

• numWarmup: Number of runs of this query for warmup (first n queries not counting into statistics), between 0
and numRun. This makes sure data is hot and caching is in effect.

• numCooldown: Number of runs of this query for cooldown (last n queries not counting into statistics), between
0 and numRun. This helps sorting out faster executions when the number of parallel clients decreases near the
end of a batch.

6.1 Featured Evaluations

Predefined evaluations are

• Global Metrics

– average position

– latency and throughput

– ingestion

– hardware metrics

– host metrics

• Drill-Down Timers

– relative position

– average times

• Slices of Timers

– heatmap of factors

• Drill-Down Queries

– total times

– normalized total times

27

Dashboard.html
Inspection.html

DBMSBenchmarker, Release 0.1

– latencies

– throughputs

– sizes of result sets

– errors

– warnings

• Slices of Queries

– latency and throughput

– hardware metrics

– timers

• Slices of Queries and Timers

– statistics - measures of tendency and dispersion, sensitive and insensitive to outliers

– plots of times

– box plots of times

• summarizing and exhaustive latex reports containing further data like

– precision and identity checks of result sets

– error messages

– warnings

– benchmark times

– experiment workflow

– initialization scripts

• an interactive inspection tool

• a Latex report containing most of these

6.1.1 Informations about DBMS

This evaluation is available in the evaluation dict and in the latex reports.

The user has to provide in a config file

• a unique name (connectionname)

• JDBC connection information

If a monitoring interface is provided, hardware metrics are collected and aggregated. We may further provide describing
information for reporting.

28 Chapter 6. Evaluation

Options.html#connection-file
Concept.html#monitoring-hardware-metrics

DBMSBenchmarker, Release 0.1

6.1.1.1 Throughput and Latency

The abbreviations mean

lat_r = Latency of runs (mean time) [ms]
lat_s = Latency of session (mean time) [ms]
tps_r1 = Throughput of runs (number of runs / total time) [Hz]
tps_r2 = Throughput of runs (number of parallel clients / cleaned mean time) [Hz]
tps_s1 = Throughput of sessions (number of runs / length of sessions / total time) [Hz]
tps_s2 = Throughput of sessions (number of parallel clients / cleaned mean time) [Hz]
tph_r2 = Throughput of runs (tps_r2 * 3600) [pH]

The metrics of index 2 are based on the assumption that the number of clients equals the size of the queues. To check
this, there are another metrics:

qs_r = Queue size of runs (tps_r1 * lat_r * 1000)
qs_s = Queue size of sessions (tps_s1 * lat_s * 1000)

Note that the total times include some overhead like spawning a pool of subprocesses, so these metrics are also a
measurement of overhead.

6.1.2 Global Metrics

6.1.2.1 Latency and Throughput

This evaluation is available as dataframes, in the evaluation dict and as png files.

For each query, latency and throughput is computed per DBMS. This chart shows the geometric mean over all queries
and per DBMS. Only successful queries and DBMS not producing any error are considered there.

6.1.2.2 Average Ranking

This evaluation is available as dataframes, in the evaluation dict and as png files.

We compute a ranking of DBMS for each query based on the sum of times, from fastest to slowest. Unsuccessful
DBMS are considered last place. The chart shows the average ranking per DBMS.

6.1.2.3 Time of Ingest per DBMS

This evaluation is available as dataframes, in the evaluation dict and as png files.

This is part of the informations provided by the user. The tool does not measure time of ingest explicitly.

6.1.2.4 Hardware Metrics

The chart shows the metrics obtained from monitoring. Values are computed as arithmetic mean across benchmarking
time. Only successful queries and DBMS not producing any error are considered.

6.1. Featured Evaluations 29

DBMSBenchmarker, Release 0.1

6.1.2.5 Host Metrics

The chart shows the metrics obtained from inside docker containers. The host information is provided in the config file.
Here, cost is based on the total time.

6.1.3 Drill-Down Timers

6.1.3.1 Relative Ranking based on Times

This evaluation is available as dataframes, in the evaluation dict and as png files.

For each query and timer, the best DBMS is considered as gold standard = 100%. Based on their times, the other
DBMS obtain a relative ranking factor. Only successful queries and DBMS not producing any error are considered.
The chart shows the geometric mean of factors per DBMS.

6.1.3.2 Average Times

This evaluation is available as dataframes, in the evaluation dict and as png files.

This is based on the mean times of all benchmark test runs. Measurements start before each benchmark run and stop
after the same benchmark run has been finished. The average value is computed per query. Parallel benchmark runs
should not slow down in an ideal situation. Only successful queries and DBMS not producing any error are considered.
The chart shows the average of query times based on mean values per DBMS and per timer.

Note that the mean of mean values (here) is in general not the same as mean of all runs (different queries may have
different number of runs).

6.1.4 Slice Timers

6.1.4.1 Heatmap of Factors

This evaluation is available as dataframes, in the evaluation dict and as png files.

The relative ranking can be refined to see the contribution of each query. The chart shows the factor of the corresponding
timer per query and DBMS. All active queries and DBMS are considered.

6.1.5 Drill-Down Queries

6.1.5.1 Total Times

This evaluation is available as dataframes, in the evaluation dict and as png files.

This is based on the times each DBMS is queried in total. Measurement starts before first benchmark run and stops
after the last benchmark run has been finished. Parallel benchmarks should speed up the total time in an ideal situation.
Only successful queries and DBMS not producing any error are considered. Note this also includes the time needed
for sorting and storing result sets etc. The chart shows the total query time per DBMS and query.

30 Chapter 6. Evaluation

DBMSBenchmarker, Release 0.1

6.1.5.2 Normalized Total Times

This evaluation is available in the evaluation dict and as png files.

The chart shows total times per query, normalized to the average total time of that query. Only successful queries and
DBMS not producing any error are considered. This is also available as a heatmap.

6.1.5.3 Throughputs

This evaluation is available in the evaluation dict and as png files.

For each query, latency and throughput is computed per DBMS. The chart shows tps_r2. Only successful queries and
DBMS not producing any error are considered there.

6.1.5.4 Latencies

This evaluation is available in the evaluation dict and as png files.

For each query, latency and throughput is computed per DBMS. The chart shows lat_r. Only successful queries and
DBMS not producing any error are considered there.

6.1.5.5 Sizes of Result Sets

This evaluation is available in the evaluation dict and as png files.

For each query, the size of received data per DBMS is stored. The chart shows the size of result sets per DBMS and
per timer. Sizes are normalized to minimum per query. All active queries and DBMS are considered.

6.1.5.6 Errors

This evaluation is available in the evaluation dict and as png files.

The chart shows per DBMS and per timer, if an error has occured. All active queries and DBMS are considered.

6.1.5.7 Warnings

This evaluation is available in the evaluation dict and as png files.

The chart shows per DBMS and per timer, if a warning has occured. All active queries and DBMS are considered.

6.1.6 Slice Queries

6.1.6.1 Latency and Throughput per Query

This evaluation is available as dataframes, in the evaluation dict and as png files.

For each query, latency and throughput is computed per DBMS. This is available as dataframes, in the evaluation dict
and as png files per query. Only successful queries and DBMS not producing any error are considered there.

6.1. Featured Evaluations 31

DBMSBenchmarker, Release 0.1

6.1.6.2 Hardware Metrics per Query

These metrics are available as png files and csv files.

These metrics are collected from a Prometheus / Grafana stack. This expects time-synchronized servers.

6.1.6.3 Timers Per Query

These plots are available as png files.

This is based on the sum of times of all single benchmark test runs. These charts show the average of times per DBMS
based on mean value. Warmup and cooldown are not included. If data transfer or connection time is also benchmarked,
the chart is stacked. The bars are ordered ascending.

6.1.7 Slice Queries and Timers

6.1.7.1 Statistics Table

These tables are available as dataframes and in the evaluation dict.

These tables show statistics about benchmarking time during the various runs per DBMS as a table. Warmup and
cooldown are not included. This is for inspection of stability. A factor column is included. This is computed as the
multiple of the minimum of the mean of benchmark times per DBMS. The DBMS are ordered ascending by factor.

6.1.7.2 Plot of Values

These plots are available as png files.

These plots show the variation of benchmarking time during the various runs per DBMS as a plot. Warmup and
cooldown are included and marked as such. This is for inspection of time dependence.

Note this is only reliable for non-parallel runs.

6.1.7.3 Boxplot of Values

These plots are available as png files.

These plots show the variation of benchmarking time during the various runs per DBMS as a boxplot. Warmup,
cooldown and zero (missing) values are not included. This is for inspection of variation and outliers.

6.1.7.4 Histogram of Values

These plots are available as png files.

These plots show the variation of benchmarking time during the various runs per DBMS as a histogram. The number
of bins equals the minimum number of result times. Warmup, cooldown and zero (missing) values are not included.
This is for inspection of the distribution of times.

32 Chapter 6. Evaluation

Concept.html#aggregation-functions

DBMSBenchmarker, Release 0.1

6.1.8 Further Data

6.1.8.1 Result Sets per Query

This evaluation is available as dataframes and csv files.

The result set (sorted values, hashed or pure size) of the first run of each DBMS can be saved per query. This is for
comparison and inspection.

6.1.8.2 All Benchmark Times

This evaluation is available as dataframes, in the evaluation dict and as csv files.

The benchmark times of all runs of each DBMS can be saved per query. This is for comparison and inspection.

6.1.8.3 All Errors

This evaluation is available as dicts.

The errors that may have occured are saved for each DBMS and per query. The error messages are fetched from Python
exceptions thrown during a benchmark run. This is for inspection of problems.

6.1.8.4 All Warnings

This evaluation is available as dicts.

The warnings that may have occured are saved for each DBMS and per query. The warning messages are generated if
comparison of result sets detects any difference. This is for inspection of problems.

6.1.8.5 Initialization Scripts

If the result folder contains init scripts, they will be included in the latex report.

6.1.8.6 Bexhoma Workflow

If the result folder contains the configuration of a bexhoma workflow, it will be included in the latex report.

6.1. Featured Evaluations 33

https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Manager

DBMSBenchmarker, Release 0.1

34 Chapter 6. Evaluation

CHAPTER

SEVEN

DASHBOARD

The dashboard helps in interactive evaluation of experiment results.

7.1 Start

The dashboard is started using a Python script:

python dashboard.py -h

usage: dashboard.py [-h] [-r RESULT_FOLDER] [-a] [-u USER] [-p PASSWORD] [-d]

Dashboard for interactive inspection of dbmsbenchmarker results.

optional arguments:
-h, --help show this help message and exit
-r RESULT_FOLDER, --result-folder RESULT_FOLDER

Folder storing benchmark result files.
-a, --anonymize Anonymize all dbms.
-u USER, --user USER User name for auth protected access.
-p PASSWORD, --password PASSWORD

Password for auth protected access.
-d, --debug Show debug information.

It has two options:

• --result-folder: Path of a local folder containing result folders. This parameter is the same as for
benchmark.py

• --anonymize: If this flag is set, all DBMS are anonymized following the parameters in their configuration.

When you start the dashboard it is available at localhost:8050.

35

Options.html#connection-file

DBMSBenchmarker, Release 0.1

7.1.1 Select Experiment

You will be shown a list of experiments available at the path you have provided. Select one experiment. Optionally
you can activate to have some default panels that will be included at start.

7.2 Concept

The dashboard analyzes the data in three dimensions using various aggregation functions:

7.2.1 Data

The cells of the runtime cube contain timer (connection, execution, data transfer, run and session) and derived metrics
(latencies, throughput). The cells of the monitoring cube contain hardware metrics.

7.2.2 Graph Panels

The dashboard is organized into 12 columns and several rows depending on the screen size. For a single graph panel
you can

• change width (number of columns)

• change height (number of rows)

• change ordering on the dashboard

• activate settings

• download underlying data as csv.

7.2.2.1 Graph Types

Available types of display are

• Line Plot

• Boxplot

• Histogramm

• Bar Chart

• Heatmap

• Table of Measures

• Table of Statistics

These can be applied to sliced / diced / aggregated data of the cubes.

There are also some preset graphs

• Heatmap of Errors

• Heatmap of Warnings

• Heatmap Result Set Size

• Heatmap Total Time

36 Chapter 7. Dashboard

Concept.html#evaluation
Concept.html#aggregation-functions

DBMSBenchmarker, Release 0.1

• Heatmap Latency Run

• Heatmap Throughput Run

• Heatmap Timer Run Factor

• Bar Chart Run drill-down

• Bar Chart Ingestion Time

7.3 Menu

The menu allows you to

• open the filtering panel

• open the favorites panel

• select (change to) an experiment

• see details about the current experiment

• activate all panels on the current dashboard

• close all active panels on the current dashboard

• add a graph (panel)

• open the settings panel

7.4 Favorites

The favorites menu allows you to

• load a dashboard

• append a list of panels to the current dashboard

• save the current list of panels as a favorite

• download a favorite

• upload a favorite

7.5 Settings

In the settings panel you can select the

• Kind of measure you want to inspect (kind, name)

• Type of plot (graph type, x-axis, annotate)

• Aggregation functions. The order of aggregation is

1. Query (run dimension)

2. Total (query dimension)

3. Connection (configuration dimension) Aggregation in the connection dimension can be drilled-down (color
by)

7.3. Menu 37

Concept.html#aggregation-functions

DBMSBenchmarker, Release 0.1

• a number of warmup runs and a number of cooldown runs This means the first n runs resp. the last n runs
are ignored in evaluation. Note this is only reliable for non-parallel connections.

7.6 Filter

In the filter panel you can

• filter

– one or more connections (configurations) using

∗ a checkbox list of single connections

∗ property filters

· DBMS

· Cluster node

· Number of clients

· CPU

· GPU

– single queries

• receive details about

– the connections (configurations)

∗ Configuration

∗ DBMS

∗ Resources

– and the queries like

∗ Configuration

∗ Number of runs

∗ Result sets

38 Chapter 7. Dashboard

Options.html#connection-file
Options.html#query-file

CHAPTER

EIGHT

INSPECTOR

Start the inspector:

result_path = 'tmp/results'
code = '1234512345'
benchmarks = benchmarker.inspector(result_path, code)

8.1 Get General Informations and Evaluations

list of successful queries
qs = benchmarks.listQueries()
list of connections
cs = benchmarks.listConnections()
print all errors
benchmarks.printErrors()
get survey evaluation
dftt, title = benchmarks.getTotalTime()
dfts, title = benchmarks.getSumPerTimer()
dftp, title = benchmarks.getProdPerTimer()
dftr, title = benchmarks.generateSortedTotalRanking()
get evaluation dict
e = evaluator.evaluator(benchmarks)
show it
e.pretty()
show part about query 1
e.pretty(e.evaluation['query'][1])
get dataframe of benchmarks for query 1 and timerRun
dfb1 = benchmarks.benchmarksToDataFrame(1,benchmarks.timerRun)
get dataframe of statistics for query 1 and timerRun
dfs1 = benchmarks.statsToDataFrame(1,benchmarks.timerRun)

39

DBMSBenchmarker, Release 0.1

8.2 Get Informations and Evaluations for a Specific DBMS and Query:

pick first connection (dbms)
connectionname = cs[0]

pick a query
numQuery = 10

get infos about query
q = benchmarks.getQueryObject(numQuery)
print(q.title)

get benchmarks and statistics for specific query
dfb1 = benchmarks.getBenchmarks(numQuery)
dfb1b = benchmarks.getBenchmarksCSV(numQuery)
dfs1 = benchmarks.getStatistics(numQuery)
dfr1 = benchmarks.getResultSetDF(numQuery, connectionname)

get error of connection at specific query
benchmarks.getError(numQuery, connectionname)

get all errors of connection at specific query
benchmarks.getError(numQuery)

get data storage (for comparison) for specific query and benchmark run
numRun = 0
df1=benchmarks.readDataStorage(numQuery,numRun)
df2=benchmarks.readResultSet(numQuery, cs[1],numRun)
inspector.getDifference12(df1, df2)

get query String for specific query
queryString = benchmarks.getQueryString(numQuery)
print(queryString)

get query String for specific query and and dbms
queryString = benchmarks.getQueryString(numQuery, connectionname=connectionname)
print(queryString)

get query String for specific query and and dbms and benchmark run
queryString = benchmarks.getQueryString(numQuery, connectionname=connectionname,␣
→˓numRun=1)
print(queryString)

40 Chapter 8. Inspector

DBMSBenchmarker, Release 0.1

8.3 Run some Isolated Queries

run single benchmark run for specific query and connection
this is for an arbitrary query string - not contained in the query config
result is not stored and does not go into any reporting
queryString = "SELECT COUNT(*) c FROM test"
output = benchmarks.runIsolatedQuery(connectionname, queryString)
print(output.durationConnect)
print(output.durationExecute)
print(output.durationTransfer)
df = tools.dataframehelper.resultsetToDataFrame(output.data)
print(df)

run single benchmark run multiple times for specific query and connection
this is for an arbitrary query string - not contained in the query config
result is not stored and does not go into any reporting
queryString = "SELECT COUNT(*) c FROM test"
output = benchmarks.runIsolatedQueryMultiple(connectionname, queryString, times=10)
print(output.durationConnect)
print(output.durationExecute)
print(output.durationTransfer)
compute statistics for execution
df = tools.dataframehelper.timesToStatsDataFrame(output.durationExecute)
print(df)

the following is handy when comparing result sets of different dbms

run an arbitrary query
this saves the result set data frame to
"query_resultset_"+connectionname+"_"+queryName+".pickle"
queryName = "test"
queryString = "SELECT COUNT(*) c FROM test"
benchmarks.runAndStoreIsolatedQuery(connectionname, queryString, queryName)

we can also easily load this data frame
df = benchmarks.getIsolatedResultset(connectionname, queryName)

8.3. Run some Isolated Queries 41

DBMSBenchmarker, Release 0.1

42 Chapter 8. Inspector

CHAPTER

NINE

USE CASES

Use Cases may be

• Benchmark 1 Query in 1 DBMS

• Compare 2 Queries in 1 DBMS

• Compare 2 Databases in 1 DBMS

• Compare 1 Query in 2 DBMS and combinations like compare n queries in m DBMS.

• Benchmarking DBMS Configurations

Scenarios may be

• Many Users / Few, Complex Queries

• Few Users / Several simple Queries

• Updated Database

9.1 Benchmark 1 Query in 1 DBMS

We want to measure how long it takes to run one query in a DBMS.

The following performs a counting query 10 times against one DBMS. The script benchmarks the execution of the
query and also the transfer of data. The result (the number of rows in table test) is stored and should be the same for
each run.

connections.config:

[
{
'name': "MySQL",
'version': "CE 8.0.13",
'info': "This uses engine innodb",
'active': True,
'JDBC': {
'driver': "com.mysql.cj.jdbc.Driver",
'url': "jdbc:mysql://localhost:3306/database",
'auth': ["username", "password"],
'jar': "mysql-connector-java-8.0.13.jar"

},
},

]

43

DBMSBenchmarker, Release 0.1

queries.config:

{
'name': 'A counting query',
'queries':
[
{
'title': "Count all rows in test",
'query': "SELECT COUNT(*) FROM test",
'numRun': 10,
'timer':
{
'datatransfer':
{
'active': True,
'compare': 'result'

},
}

},
]

}

9.2 Compare 2 Queries in 1 DBMS

We want to compare run times of two queries in a DBMS.

The following performs a query 10 times against two DBMS each. This helps comparing the relevance of position of
ordering in the execution plan in this case. The script benchmarks the execution of the query and also the transfer of
data. The result (some rows of table test in a certain order) is stored and should be the same for each run. Beware that
storing result may take a lot of RAM and disk space!

connections.config:

[
{
'name': "MySQL-1",
'version': "CE 8.0.13",
'info': "This uses engine innodb",
'active': True,
'JDBC': {
'driver': "com.mysql.cj.jdbc.Driver",
'url': "jdbc:mysql://localhost:3306/database",
'auth': ["username", "password"],
'jar': "mysql-connector-java-8.0.13.jar"

},
},
{
'name': "MySQL-2",
'version': "CE 8.0.13",
'info': "This uses engine innodb",
'active': True,
'JDBC': {

(continues on next page)

44 Chapter 9. Use Cases

DBMSBenchmarker, Release 0.1

(continued from previous page)

'driver': "com.mysql.cj.jdbc.Driver",
'url': "jdbc:mysql://localhost:3306/database",
'auth': ["username", "password"],
'jar': "mysql-connector-java-8.0.13.jar"

},
},

]

queries.config:

{
'name': 'An ordering query',
'queries':
[
{
'title': "Retrieve rows in test in a certain order",
'DBMS': {
'MySQL-1': "SELECT * FROM (SELECT * FROM test WHERE a IS TRUE) tmp ORDER BY b",
'MySQL-2': "SELECT * FROM (SELECT * FROM test ORDER BY b) tmp WHERE a IS TRUE",

},
'numRun': 10,
'timer':
{
'datatransfer':
{
'active': True,
'compare': 'result'

},
}

},
]

}

9.3 Compare 2 Databases in 1 DBMS

We want to compare run times of two databases in a DBMS. An application may be having the same tables with different
indices and data types to measure influence.

The following performs a query 10 times against two databases in a DBMS each. This helps comparing the relevance
of table structure in this case. Suppose we have a table test in database database and in database2 resp. The script
benchmarks the execution of the query and also the transfer of data. The result (the number of rows in table test) is
stored and should be the same for each run.

connections.config:

[
{
'name': "MySQL",
'version': "CE 8.0.13",
'info': "This uses engine innodb",
'active': True,

(continues on next page)

9.3. Compare 2 Databases in 1 DBMS 45

DBMSBenchmarker, Release 0.1

(continued from previous page)

'JDBC': {
'driver': "com.mysql.cj.jdbc.Driver",
'url': "jdbc:mysql://localhost:3306/database",
'auth': ["username", "password"],
'jar': "mysql-connector-java-8.0.13.jar"

},
},
{
'name': "MySQL-2",
'version': "CE 8.0.13",
'info': "This uses engine myisam",
'active': True,
'JDBC': {
'driver': "com.mysql.cj.jdbc.Driver",
'url': "jdbc:mysql://localhost:3306/database2",
'auth': ["username", "password"],
'jar': "mysql-connector-java-8.0.13.jar"

},
},

]

queries.config:

{
'name': 'A counting query',
'queries':
[
{
'title': "Count all rows in test",
'query': "SELECT COUNT(*) FROM test",
'numRun': 10,
'timer':
{
'datatransfer':
{
'active': True,
'compare': 'result'

},
}

},
]

}

46 Chapter 9. Use Cases

DBMSBenchmarker, Release 0.1

9.4 Compare 1 Query in 2 DBMS

We want to compare run times of two DBMS. An application may be having the same tables in different DBMS and
want to find out which one is faster.

The following performs a query 10 times against two DBMS each. This helps comparing the power of the two DBMS,
MySQL and PostgreSQL in this case. Suppose we have a table test in both DBMS. The script benchmarks the execution
of the query and also the transfer of data. The result (the number of rows in table test) is stored and should be the same
for each run.

connections.config:

[
{
'name': "MySQL",
'version': "CE 8.0.13",
'info': "This uses engine innodb",
'active': True,
'JDBC': {
'driver': "com.mysql.cj.jdbc.Driver",
'url': "jdbc:mysql://localhost:3306/database",
'auth': ["username", "password"],
'jar': "mysql-connector-java-8.0.13.jar"

},
},
{
'name': "PostgreSQL",
'version': "v11",
'info': "This uses standard config"
'active': True,
'JDBC': {
'driver': "org.postgresql.Driver",
'url': "jdbc:postgresql://localhost:5432/database",
'auth': ["username", "password"],
'jar': "postgresql-42.2.5.jar"

},
},

]

queries.config:

{
'name': 'A counting query',
'queries':
[
{
'title': "Count all rows in test",
'query': "SELECT COUNT(*) FROM test",
'numRun': 10,
'timer':
{
'datatransfer':
{
'active': True,

(continues on next page)

9.4. Compare 1 Query in 2 DBMS 47

DBMSBenchmarker, Release 0.1

(continued from previous page)

'compare': 'result'
},

}
},

]
}

48 Chapter 9. Use Cases

CHAPTER

TEN

SCENARIOS

10.1 Many Users / Few, Complex Queries

Excerpt from connections.config:

'connectionmanagement': {
'timeout': 600,
'numProcesses': 20,
'runsPerConnection': 1

},

That is we allow 20 parallel clients, which connect to the DBMS host to run 1 single query each. Note the host of the
benchmarking tool must be capable of 20 parallel processes.

Excerpt from queries.config:

{
'title': "Pricing Summary Report (TPC-H Q1)",
'query': """select
l_returnflag,
l_linestatus,
cast(sum(l_quantity) as int) as sum_qty,
sum(l_extendedprice) as sum_base_price,
sum(l_extendedprice*(1-l_discount)) as sum_disc_price,
sum(l_extendedprice*(1-l_discount)*(1+l_tax)) as sum_charge,
avg(l_quantity) as avg_qty,
avg(l_extendedprice) as avg_price,
avg(l_discount) as avg_disc,
count(*) as count_order
from
lineitem
where
l_shipdate <= date '1998-12-01' - interval '{DELTA}' day
group by
l_returnflag,
l_linestatus
order by
l_returnflag,
l_linestatus
limit 10000000""",

'parameter': {
(continues on next page)

49

DBMSBenchmarker, Release 0.1

(continued from previous page)

'DELTA': {
'type': "integer",
'range': [60,99]

},
},
'active': True,
'numRun': 20,
'timer':
{
'datatransfer':
{
'active': True,
'sorted': True,
'compare': 'hash',
'store': 'dataframe',
'precision': 0,

},
'connection':
{
'active': True,

}
}

},

That is each simulated user runs the (randomized) TPC-H query number 1. The result sets will be truncated to no
decimals, sorted and compared by their hash values. The result set of the first run will be stored to disk as a pickled
pandas dataframe. The time for connection, execution and data transfer will be measured.

10.2 Few Users / Several simple Queries

Excerpt from connections.config:

'connectionmanagement': {
'timeout': 600,
'numProcesses': 1,
'runsPerConnection': 5

},

That is we allow only one client at a time, which connects to the DBMS host to run 5 single queries.

Excerpt from queries.config:

{
'title': "Count rows in nation",
'query': "SELECT COUNT(*) c FROM nation",
'active': True,
'numRun': 20,
'timer':
{
'datatransfer':
{

(continues on next page)

50 Chapter 10. Scenarios

DBMSBenchmarker, Release 0.1

(continued from previous page)

'active': True,
'sorted': True,
'compare': 'result',
'store': 'dataframe',
'precision': 4,

},
'connection':
{
'active': True,

}
}

},

That is each simulated user counts the number of rows in table nations (five times per connection). We want to have
20 counts in total, so the simulated user (re)connects four times one after the other. The result sets will be truncated to
4 decimals, sorted and compared. The result set of the first run will be stored to disk as a pickled pandas dataframe.
The time for connection, execution and data transfer will be measured.

10.3 Updated Database

We want to compute a sum, update some value and compute the sum again. This will take place 10 times as a sequence
one after the other.

Excerpt from queries.config:

{
'title': "Sum of facts",
'query': "SELECT SUM(fact) s FROM facts",
'active': False,
'numRun': 1,

},
{
'title': "Update Facts",
'query': "UPDATE facts SET fact={FACT} WHERE id={ID}",
'active': False,
'numRun': 10,
'parameter': {
'FACT': {
'type': "float",
'range': [0.05, 20.00]

},
'ID': {
'type': "integer",
'range': [1,1000]

},
},

{
'title': "Sequence of compute/update/compute",
'queryList': [1,2,1]
'active': True,
'numRun': 30,

(continues on next page)

10.3. Updated Database 51

DBMSBenchmarker, Release 0.1

(continued from previous page)

'connectionmanagement': {
'timeout': 600,
'numProcesses': 1,
'runsPerConnection': 3

}
}

52 Chapter 10. Scenarios

CHAPTER

ELEVEN

EXAMPLE RUNS

11.1 Run benchmarks

python3 benchmark.py run -f test generates a folder containing result files: csv of benchmarks per query. The
example uses test/connections.config and test/queries.config as config files.

Example: This produces a folder containing

connections.config
queries.config
protocol.json
query_1_connection.csv
query_1_execution.csv
query_1_transfer.csv
query_2_connection.csv
query_2_execution.csv
query_2_transfer.csv
query_3_connection.csv
query_3_execution.csv
query_3_transfer.csv

where

• connections.config is a copy of the input file

• queries.config is a copy of the input file

• protocol.json: JSON file containing error messages (up to one per query and connection), durations (per
query) and retried data (per query)

• query_n_connection.csv: CSV containing times (columns) for each dbms (rows) for query n - duration of
establishing JDBC connection

• query_n_execution.csv: CSV containing times (columns) for each dbms (rows) for query n - duration of
execution

• query_n_transfer.csv: CSV containing times (columns) for each dbms (rows) for query n - duration of data
transfer

53

DBMSBenchmarker, Release 0.1

11.2 Run benchmarks and generate evaluations

python3 benchmark.py run -e yes -f test is the same as above, and additionally generates evaluation cube
files.

evaluation.dict
evaluation.json

These can be inspected comfortably using the dashboard or the Python API.

11.3 Read stored benchmarks

python3 benchmark.py read -r 12345 reads files from folder 12345containing result files and shows summaries
of the results.

11.4 Generate evaluation of stored benchmarks

python3 benchmark.py read -r 12345 -e yes reads files from folder 12345 containing result files, and gen-
erates evaluation cubes. The example uses 12345/connections.config and 12345/queries.config as config
files.

11.5 Continue benchmarks

python3 benchmark.py continue -r 12345 -e yes reads files from folder 12345 containing result files, con-
tinues to perform possibly missing benchmarks and generates evaluation cubes. This is useful if a run had to be stopped.
It continues automatically at the first missing query. It can be restricted to specific queries or connections using -q and
c resp. The example uses 12345/connections.config and 12345/queries.config as config files.

11.5.1 Continue benchmarks for more queries

You would go to a result folder, say 12345, and add queries to the query file. python3 benchmark.py continue
-r 12345 -g yes then reads files from folder 12345 and continue benchmarking the new (missing) queries.

Do not remove existing queries, since results are mapped to queries via their number (position). Use ``active``
instead.

11.5.2 Continue benchmarks for more connections

You would go to a result folder, say 12345, and add connections to the connection file. python3 benchmark.py
continue -r 12345 -g yes then reads files from folder 12345 and continue benchmarking the new (missing) con-
nections.

Do not remove existing connections, since their results would not make any sense anymore. Use ``active`` instead.

54 Chapter 11. Example Runs

DBMSBenchmarker, Release 0.1

11.6 Rerun benchmarks

python3 benchmark.py run -r 12345 -e yes reads files from folder 12345 containing result files, performs
benchmarks again and generates evaluation cubes. It also performs benchmarks of missing queries. It can be restricted
to specific queries or connections using -q and c resp. The example uses 12345/connections.config and 12345/
queries.config as config files.

11.6.1 Rerun benchmarks for one query

python3 benchmark.py run -r 12345 -e yes -q 5 reads files from folder 12345containing result files, per-
forms benchmarks again and generates evaluation cubes. The example uses 12345/connections.config and
12345/queries.config as config files. In this example, query number 5 is benchmarked (again) in any case.

11.6.2 Rerun benchmarks for one connection

python3 benchmark.py run -r 12345 -g yes -c MySQL reads files from folder 12345containing result files,
performs benchmarks again and generates evaluation cubes. The example uses 12345/connections.config and
12345/queries.config as config files. In this example, the connection named MySQL is benchmarked (again) in
any case.

11.6. Rerun benchmarks 55

https://GitHub.com/Beuth-Erdelt/DBMS-Benchmarker/releases/

DBMSBenchmarker, Release 0.1

56 Chapter 11. Example Runs

CHAPTER

TWELVE

DBMS-BENCHMARKER

DBMS-Benchmarker is a Python-based application-level blackbox benchmark tool for Database Management Systems
(DBMS). It aims at reproducible measuring and easy evaluation of the performance the user receives even in complex
benchmark situations. It connects to a given list of DBMS (via JDBC) and runs a given list of (SQL) benchmark
queries. Queries can be parametrized and randomized. Results and evaluations are available via a Python interface and
can be inspected for example in Jupyter notebooks. An interactive dashboard assists in multi-dimensional analysis of
the results.

See the homepage and the documentation.

12.1 Key Features

DBMS-Benchmarker

• is Python3-based

• helps to benchmark DBMS
– connects to all DBMS having a JDBC interface - including GPU-enhanced DBMS

– requires only JDBC - no vendor specific supplements are used

– benchmarks arbitrary SQL queries - in all dialects

– allows planning of complex test scenarios - to simulate realistic or revealing use cases

– allows easy repetition of benchmarks in varying settings - different hardware, DBMS, DBMS configura-
tions, DB settings etc

– investigates a number of timing aspects - connection, execution, data transfer, in total, per session etc

– investigates a number of other aspects - received result sets, precision, number of clients

– collects hardware metrics from a Prometheus server - hardware utilization, energy consumption etc

• helps to evaluate results - by providing

– metrics that can be analyzed by aggregation in multi-dimensions, like maximum throughput per DBMS,
average CPU utilization per query or geometric mean of run latency per workload

– predefined evaluations like statistics

– in standard Python data structures

– in Jupyter notebooks see rendered example

– in an interactive dashboard

57

https://github.com/Beuth-Erdelt/DBMS-Benchmarker
https://dbmsbenchmarker.readthedocs.io/en/latest/Docs.html
https://github.com/Beuth-Erdelt/DBMS-Benchmarker/blob/master/Evaluation-Demo.ipynb
https://beuth-erdelt.github.io/DBMS-Benchmarker/Evaluation-Demo.html
Dashboard.html

DBMSBenchmarker, Release 0.1

For more informations, see a basic example or take a look in the documentation for a full list of options.

The code uses several Python modules, in particular for handling DBMS. This module has been tested with Brytlyt,
Citus, Clickhouse, DB2, Exasol, Kinetica, MariaDB, MariaDB Columnstore, MemSQL, Mariadb, MonetDB, MySQL,
OmniSci, Oracle DB, PostgreSQL, SingleStore, SQL Server and SAP HANA.

12.2 Installation

Run pip install dbmsbenchmarker

12.3 Basic Usage

The following very simple use case runs the query SELECT COUNT(*) FROM test 10 times against one local MySQL
installation. As a result we obtain an interactive dashboard to inspect timing aspects.

12.3.1 Configuration

We need to provide

• a DBMS configuration file, e.g. in ./config/connections.config

[
{
'name': "MySQL",
'active': True,
'JDBC': {
'driver': "com.mysql.cj.jdbc.Driver",
'url': "jdbc:mysql://localhost:3306/database",
'auth': ["username", "password"],
'jar': "mysql-connector-java-8.0.13.jar"

}
}
]

• the required JDBC driver, e.g. mysql-connector-java-8.0.13.jar

• a Queries configuration file, e.g. in ./config/queries.config

{
'name': 'Some simple queries',
'connectionmanagement': {

'timeout': 5 # in seconds
},

'queries':
[
{
'title': "Count all rows in test",
'query': "SELECT COUNT(*) FROM test",
'numRun': 10

}
(continues on next page)

58 Chapter 12. DBMS-Benchmarker

https://dbmsbenchmarker.readthedocs.io/en/latest/Docs.html
Options.html#connection-file
Options.html#query-file

DBMSBenchmarker, Release 0.1

(continued from previous page)

]
}

12.3.2 Perform Benchmark

Run the CLI command: dbmsbenchmarker run -e yes -b -f ./config

• -e yes: This will precompile some evaluations and generate the timer cube.

• -b: This will suppress some output

• -f: This points to a folder having the configuration files.

This is equivalent to python benchmark.py run -e yes -b -f ./config

After benchmarking has been finished we will see a message like

Experiment <code> has been finished

The script has created a result folder in the current directory containing the results. <code> is the name of the folder.

12.3.3 Evaluate Results in Dashboard

Run the command: dbmsdashboard

This will start the evaluation dashboard at localhost:8050. Visit the address in a browser and select the experiment
<code>.

Alternatively you may use a Jupyter notebook, see a rendered example.

12.4 Benchmarking in a Kubernetes Cloud

This module can serve as the query executor [2] and evaluator [1] for distributed parallel benchmarking experiments
in a Kubernetes Cloud, see the orchestrator for more details.

12.5 Limitations

Limitations are:

• strict black box perspective - may not use all tricks available for a DBMS

• strict JDBC perspective - depends on a JVM and provided drivers

• strict user perspective - client system, network connection and other host workloads may affect performance

• not officially applicable for well known benchmark standards - partially, but not fully complying with TPC-H
and TPC-DS

• hardware metrics are collected from a monitoring system - not as precise as profiling

• no GUI for configuration

• strictly Python - a very good and widely used language, but maybe not your choice

Other comparable products you might like

12.4. Benchmarking in a Kubernetes Cloud 59

https://github.com/Beuth-Erdelt/DBMS-Benchmarker/blob/master/Evaluation-Demo.ipynb
https://beuth-erdelt.github.io/DBMS-Benchmarker/Evaluation-Demo.html
https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Manager

DBMSBenchmarker, Release 0.1

• Apache JMeter - Java-based performance measure tool, including a configuration GUI and reporting to HTML

• HammerDB - industry accepted benchmark tool, but limited to some DBMS

• Sysbench - a scriptable multi-threaded benchmark tool based on LuaJIT

• OLTPBench -Java-based performance measure tool, using JDBC and including a lot of predefined benchmarks

12.6 References

[1] A Framework for Supporting Repetition and Evaluation in the Process of Cloud-Based DBMS Performance Bench-
marking

Erdelt P.K. (2021) A Framework for Supporting Repetition and Evaluation in the Process of Cloud-
Based DBMS Performance Benchmarking. In: Nambiar R., Poess M. (eds) Performance Evaluation
and Benchmarking. TPCTC 2020. Lecture Notes in Computer Science, vol 12752. Springer, Cham.
https://doi.org/10.1007/978-3-030-84924-5_6

[2] Orchestrating DBMS Benchmarking in the Cloud with Kubernetes

Erdelt P.K. (2022) Orchestrating DBMS Benchmarking in the Cloud with Kubernetes. In: Nambiar R.,
Poess M. (eds) Performance Evaluation and Benchmarking. TPCTC 2021. Lecture Notes in Computer
Science, vol 13169. Springer, Cham. https://doi.org/10.1007/978-3-030-94437-7_6

(old, slightly outdated docs)

60 Chapter 12. DBMS-Benchmarker

https://jmeter.apache.org/index.html
https://www.hammerdb.com/
https://github.com/akopytov/sysbench
https://github.com/oltpbenchmark/oltpbench
https://doi.org/10.1007/978-3-030-84924-5_6
https://doi.org/10.1007/978-3-030-84924-5_6
https://doi.org/10.1007/978-3-030-84924-5_6
https://www.researchgate.net/publication/353236865_Orchestrating_DBMS_Benchmarking_in_the_Cloud_with_Kubernetes
https://doi.org/10.1007/978-3-030-94437-7_6
Docs_old.html

	Overview
	Example: TPC-H
	Prerequisites
	Perform Benchmark
	Evaluate Results in Dashboard

	Where to go

	Concepts
	Experiment
	Single Query
	Basic Parameters
	Basic Metrics
	Comparison
	Monitoring Hardware Metrics
	Evaluation
	Aggregation Functions

	Usage
	Featured Usage
	Featured Parameters

	Options
	Command Line Options and Configuration
	Result folder
	Config folder
	Connection File
	Monitoring
	Query File
	Extended Query File
	SQL Dialects
	Connection Management
	Connection Latency
	Results and Comparison

	Randomized Query File
	Query List
	Query
	Connection
	Generate evaluation
	Debug
	Sleep
	Batch
	Verbosity Level
	Working querywise or connectionswise
	Client processes
	Random Seed
	Subfolders
	Delay start

	Evaluation
	Featured Evaluations
	Informations about DBMS
	Throughput and Latency

	Global Metrics
	Latency and Throughput
	Average Ranking
	Time of Ingest per DBMS
	Hardware Metrics
	Host Metrics

	Drill-Down Timers
	Relative Ranking based on Times
	Average Times

	Slice Timers
	Heatmap of Factors

	Drill-Down Queries
	Total Times
	Normalized Total Times
	Throughputs
	Latencies
	Sizes of Result Sets
	Errors
	Warnings

	Slice Queries
	Latency and Throughput per Query
	Hardware Metrics per Query
	Timers Per Query

	Slice Queries and Timers
	Statistics Table
	Plot of Values
	Boxplot of Values
	Histogram of Values

	Further Data
	Result Sets per Query
	All Benchmark Times
	All Errors
	All Warnings
	Initialization Scripts
	Bexhoma Workflow

	Dashboard
	Start
	Select Experiment

	Concept
	Data
	Graph Panels
	Graph Types

	Menu
	Favorites
	Settings
	Filter

	Inspector
	Get General Informations and Evaluations
	Get Informations and Evaluations for a Specific DBMS and Query:
	Run some Isolated Queries

	Use Cases
	Benchmark 1 Query in 1 DBMS
	Compare 2 Queries in 1 DBMS
	Compare 2 Databases in 1 DBMS
	Compare 1 Query in 2 DBMS

	Scenarios
	Many Users / Few, Complex Queries
	Few Users / Several simple Queries
	Updated Database

	Example Runs
	Run benchmarks
	Run benchmarks and generate evaluations
	Read stored benchmarks
	Generate evaluation of stored benchmarks
	Continue benchmarks
	Continue benchmarks for more queries
	Continue benchmarks for more connections

	Rerun benchmarks
	Rerun benchmarks for one query
	Rerun benchmarks for one connection

	DBMS-Benchmarker
	Key Features
	Installation
	Basic Usage
	Configuration
	Perform Benchmark
	Evaluate Results in Dashboard

	Benchmarking in a Kubernetes Cloud
	Limitations
	References

