

DBMS Benchmarker Python Package

[image: Maintenance]
[#1][image: GitHub release]
[#2][image: PyPI version]
[#3][image: .github/workflows/draft-pdf.yml]
[#4][image: DOI]
[#5][image: JOSS]
[#6]
DBMS-Benchmarker

DBMS-Benchmarker is a Python-based application-level blackbox benchmark tool for Database Management Systems (DBMS).
It aims at reproducible measuring and easy evaluation of the performance the user receives even in complex benchmark situations.
It connects to a given list of DBMS (via JDBC) and runs a given list of (SQL) benchmark queries.
Queries can be parametrized and randomized.
Results and evaluations are available via a Python interface and can be inspected with standard Python tools like pandas DataFrames.
An interactive visual dashboard assists in multi-dimensional analysis of the results.

See the homepage[#7] and the documentation[#8].

If you encounter any issues, please report them to our Github issue tracker[#9].

Key Features

DBMS-Benchmarker

	is Python3-based

	helps to benchmark DBMS

	connects to all DBMS having a JDBC interface - including GPU-enhanced DBMS

	requires only JDBC - no vendor specific supplements are used

	benchmarks arbitrary SQL queries - in all dialects

	allows planning of complex test scenarios - to simulate realistic or revealing use cases

	allows easy repetition of benchmarks in varying settings - different hardware, DBMS, DBMS configurations, DB settings etc

	investigates a number of timing aspects - connection, execution, data transfer, in total, per session etc

	investigates a number of other aspects - received result sets, precision, number of clients

	collects hardware metrics from a Prometheus server - hardware utilization, energy consumption etc

	helps to evaluate results - by providing

	metrics that can be analyzed by aggregation in multi-dimensions, like maximum throughput per DBMS, average CPU utilization per query or geometric mean of run latency per workload

	predefined evaluations like statistics

	in standard Python data structures

	in Jupyter notebooks[#10]
see rendered example[#11]

	in an interactive dashboard

For more informations, see a basic example or take a look in the documentation[#12] for a full list of options.

The code uses several Python modules, in particular jaydebeapi for handling DBMS.
This module has been tested with Clickhouse, DB2, Exasol, Hyperscale (Citus), Kinetica, MariaDB, MariaDB Columnstore, MemSQL, Mariadb, MonetDB, MySQL, OmniSci, Oracle DB, PostgreSQL, SingleStore, SQL Server, SAP HANA, TimescaleDB and Vertica.

Installation

Run pip install dbmsbenchmarker to install the package.

You will also need to have

	Java installed[#13] (we tested with Java 8)

	JAVA_HOME set correctly

	a JDBC driver suitable for the DBMS you want to connect to (optionally located in your CLASSPATH)

Basic Usage

The following very simple use case runs the query SELECT COUNT(*) FROM test 10 times against one local MySQL installation.
As a result we obtain an interactive dashboard to inspect timing aspects.

Configuration

We need to provide

	a DBMS configuration file[#14], e.g. in ./config/connections.config

[
{
 'name': "MySQL",
 'active': True,
 'JDBC': {
 'driver': "com.mysql.cj.jdbc.Driver",
 'url': "jdbc:mysql://localhost:3306/database",
 'auth': ["username", "password"],
 'jar': "mysql-connector-java-8.0.13.jar"
 }
}
]

	the required JDBC driver, e.g. mysql-connector-java-8.0.13.jar

	a Queries configuration file[#15], e.g. in ./config/queries.config

{
'name': 'Some simple queries',
'connectionmanagement': {
 'timeout': 5 # in seconds
 },
'queries':
[
 {
 'title': "Count all rows in test",
 'query': "SELECT COUNT(*) FROM test",
 'numRun': 10
 }
]
}

Perform Benchmark

Run the CLI command: dbmsbenchmarker run -e yes -b -f ./config

	-e yes: This will precompile some evaluations and generate the timer cube.

	-b: This will suppress some output

	-f: This points to a folder having the configuration files.

This is equivalent to python benchmark.py run -e yes -b -f ./config

After benchmarking has been finished we will see a message like

Experiment <code> has been finished

The script has created a result folder in the current directory containing the results. <code> is the name of the folder.

Evaluate Results in Dashboard

Run the command: dbmsdashboard

This will start the evaluation dashboard at localhost:8050.
Visit the address in a browser and select the experiment <code>.

Alternatively you may use a Jupyter notebook[#16], see a rendered example[#17].

Limitations

Limitations are:

	strict black box perspective - may not use all tricks available for a DBMS

	strict JDBC perspective - depends on a JVM and provided drivers

	strict user perspective - client system, network connection and other host workloads may affect performance

	not officially applicable for well known benchmark standards - partially, but not fully complying with TPC-H and TPC-DS

	hardware metrics are collected from a monitoring system - not as precise as profiling

	no GUI for configuration

	strictly Python - a very good and widely used language, but maybe not your choice

Other comparable products you might like

	Apache JMeter[#18] - Java-based performance measure tool, including a configuration GUI and reporting to HTML

	HammerDB[#19] - industry accepted benchmark tool based on Tcl, but limited to some DBMS

	Sysbench[#20] - a scriptable multi-threaded benchmark tool based on LuaJIT

	OLTPBench[#21] - Java-based performance measure tool, using JDBC and including a lot of predefined benchmarks

	BenchBase[#22] - successor of OLTPBench

Contributing, Bug Reports

If you have any question or found a bug, please report them to our Github issue tracker[#23].
In any bug report, please let us know:

	Which operating system and hardware (32 bit or 64 bit) you are using

	Python version

	DBMSBenchmarker version (or git commit/date)

	DBMS you are connecting to

	Traceback that occurs (the full error message)

We are always looking for people interested in helping with code development, documentation writing, technical administration, and whatever else comes up.
If you wish to contribute, please first read the contribution section in the documentation[#24].

Benchmarking in a Kubernetes Cloud

This module can serve as the query executor [2] and evaluator [1] for distributed parallel benchmarking experiments in a Kubernetes Cloud, see the orchestrator[#25] for more details.

 Overview

Overview

This documentation contains

	an example of how to perform a TPC-H-like Benchmark from a command line

	an illustration of the concepts

	an illustration of the evaluations

	a description of the options and configurations

	more extensive examples of using the cli tool

	some use-cases and test scenarios

	examples of how to use the interactive inspector

	examples of how to use the interactive dashboard

Footnotes

 Example: TPC-H

Example: TPC-H

This example shows how to benchmark 22 reading queries Q1-Q22 derived from TPC-H in MySQL

The query file is derived from the TPC-H and as such is not comparable to published TPC-H results, as the query file results do not comply with the TPC-H Specification.

Official TPC-H benchmark - http://www.tpc.org/tpch

Content:

	Prerequisites

	Perform Benchmark

	Evaluate Results in Dashboard

	Where to go

Prerequisites

We need

	a local instance of MySQL

	having a database database containing the TPC-H data of SF=1

	access rights for user / password: username/password

	a suitable MySQL JDBC driver jar file

	JDK 8 installed

If necessary, adjust the settings in the file example/connections.py:

[
 {
 'name': "MySQL",
 'alias': "Some DBMS",
 'version': "CE 8.0.13",
 'docker': 'MySQL',
 'docker_alias': "DBMS A",
 'dialect': "MySQL",
 'hostsystem': {'node': 'localhost'},
 'info': "This is an example: MySQL on localhost",
 'active': True,
 'JDBC': {
 'driver': "com.mysql.cj.jdbc.Driver",
 'url': "jdbc:mysql://localhost:3306/database",
 'auth': ["username", "password"],
 'jar': "mysql-connector-java-8.0.13.jar"
 },
 },
]

Perform Benchmark

Run the command:

python benchmark.py run -e yes -b -f example/tpch

	-e yes: This will precompile some evaluations and generate the timer cube.

	-b: This will suppress some output

	-f: This points to a folder having the configuration files.

For more options, see the documentation

After benchmarking has been finished will see a message like

Experiment <code> has been finished

The script has created a result folder in the current directory containing the results. <code> is the name of the folder.

Evaluate Results in Dashboard

Run the command:

python dashboard.py

This will start the evaluation dashboard at localhost:8050.
Visit the address in a browser and select the experiment <code>.

Where to go

	Use different DBMS

	Add metadata

	SF

	Use Bexhoma: https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Manager

Footnotes

 Concepts

Concepts

Experiment

An experiment is organized in queries.
A query is a statement, that is understood by a Database Management System (DBMS).

Single Query

A benchmark of a query consists of these steps:

 Use Cases

Use Cases

Use Cases may be

	Benchmark 1 Query in 1 DBMS

	Compare 2 Queries in 1 DBMS

	Compare 2 Databases in 1 DBMS

	Compare 1 Query in 2 DBMS

 Parameter

Parameter

Featured Parameters

The lists of DBMS and queries are given in config files in dict format.

Benchmarks can be parametrized by

	number of benchmark runs: Is performance stable across time?

	number of benchmark runs per connection: How does reusing a connection affect performance?

	number of warmup and cooldown runs, if any: How does (re)establishing a connection affect performance?

	number of parallel clients: How do multiple user scenarios affect performance?

	optional list of timers (currently: connection, execution, data transfer, run and session): Where does my time go?

	sequences of queries: How does sequencing influence performance?

	optional comparison of result sets: Do I always receive the same results sets?

Benchmarks can be randomized (optionally with specified seeds for reproducible results) to avoid caching side effects and to increase variety of queries by taking samples of arbitrary size from a

	list of elements

	dict of elements (one-to-many relations)

	range of integers

	range of floats

	range of days

	range of (first of) months

	range of years

This is inspired by TPC-H[#1] and TPC-DS[#2] - Decision Support Benchmarks.

Options

Command Line Options and Configuration

How to configure the benchmarker can be illustrated best by looking at the source code of the command line tool benchmark.py, which will be described in the following.

python3 benchmark.py -h

usage: dbmsbenchmarker [-h] [-d] [-b] [-qf QUERY_FILE] [-cf CONNECTION_FILE] [-q QUERY] [-c CONNECTION] [-ca CONNECTION_ALIAS] [-f CONFIG_FOLDER] [-r RESULT_FOLDER] [-e {no,yes}] [-w {query,connection}] [-p NUMPROCESSES] [-s SEED]
 [-cs] [-ms MAX_SUBFOLDERS] [-sl SLEEP] [-st START_TIME] [-sf SUBFOLDER] [-vq] [-vs] [-vr] [-vp] [-pn NUM_RUN] [-m] [-mps]
 {run,read,continue}

A benchmark tool for RDBMS. It connects to a given list of RDBMS via JDBC and runs a given list benchmark queries. Optionally some reports are generated.

positional arguments:
 {run,read,continue} run benchmarks and save results, or just read benchmark results from folder, or continue with missing benchmarks only

optional arguments:
 -h, --help show this help message and exit
 -d, --debug dump debug informations
 -b, --batch batch mode (more protocol-like output), automatically on for debug mode
 -qf QUERY_FILE, --query-file QUERY_FILE
 name of query config file
 -cf CONNECTION_FILE, --connection-file CONNECTION_FILE
 name of connection config file
 -q QUERY, --query QUERY
 number of query to benchmark
 -c CONNECTION, --connection CONNECTION
 name of connection to benchmark
 -ca CONNECTION_ALIAS, --connection-alias CONNECTION_ALIAS
 alias of connection to benchmark
 -f CONFIG_FOLDER, --config-folder CONFIG_FOLDER
 folder containing query and connection config files. If set, the names connections.config and queries.config are assumed automatically.
 -r RESULT_FOLDER, --result-folder RESULT_FOLDER
 folder for storing benchmark result files, default is given by timestamp
 -e {no,yes}, --generate-evaluation {no,yes}
 generate new evaluation file
 -w {query,connection}, --working {query,connection}
 working per query or connection
 -p NUMPROCESSES, --numProcesses NUMPROCESSES
 Number of parallel client processes. Global setting, can be overwritten by connection. If None given, half of all available processes is taken
 -s SEED, --seed SEED random seed
 -cs, --copy-subfolder
 copy subfolder of result folder
 -ms MAX_SUBFOLDERS, --max-subfolders MAX_SUBFOLDERS
 maximum number of subfolders of result folder
 -sl SLEEP, --sleep SLEEP
 sleep SLEEP seconds before going to work
 -st START_TIME, --start-time START_TIME
 sleep until START-TIME before beginning benchmarking
 -sf SUBFOLDER, --subfolder SUBFOLDER
 stores results in a SUBFOLDER of the result folder
 -vq, --verbose-queries
 print every query that is sent
 -vs, --verbose-statistics
 print statistics about query that have been sent
 -vr, --verbose-results
 print result sets of every query that have been sent
 -vp, --verbose-process
 print result sets of every query that have been sent
 -pn NUM_RUN, --num-run NUM_RUN
 Parameter: Number of executions per query
 -m, --metrics collect hardware metrics per query
 -mps, --metrics-per-stream
 collect hardware metrics per stream

Result folder

This optional argument is the name of a folder.

If this folder contains results, results saved inside can be read or benchmarks saved there can be continued.

 DBMS

DBMS

In the following we list some minimal connection information that have been used in the past to connect to DBMS successfully.

Make sure to adjust the

	URL of the server localhost

	port of the server, when necessary

	name of the database database (and / or schema)

	username and passwort user/password

	path of the (locally existing) JDBC jar file - you will have to download the jar file from the website of the vendor

Citus Data

https://www.citusdata.com/

JDBC driver: https://jdbc.postgresql.org/

[
 {
 'name': 'Citus',
 'info': 'This is a demo of Citus',
 'active': True,
 'JDBC': {
 'driver': 'org.postgresql.Driver',
 'url': 'jdbc:postgresql://localhost:5432/database',
 'auth': ['user', 'password'],
 'jar': 'jars/postgresql-42.2.5.jar'
 }
 },
]

Clickhouse

https://clickhouse.com/

JDBC driver: https://github.com/ClickHouse/clickhouse-jdbc

[
 {
 'name': 'Clickhouse',
 'info': 'This is a demo of Clickhouse',
 'active': True,
 'JDBC': {
 'driver': 'ru.yandex.clickhouse.ClickHouseDriver',
 'url': 'jdbc:clickhouse://localhost:8123/database',
 'auth': ['user', 'password'],
 'jar': ['clickhouse-jdbc-0.2.4.jar', 'commons-codec-1.9.jar', 'commons-logging-1.2.jar', 'guava-19.0.jar', 'httpclient-4.5.2.jar', 'httpcore-4.4.4.jar', 'httpmime-4.5.2.jar', 'jackson-annotations-2.7.0.jar', 'jackson-core-2.7.3.jar', 'jackson-databind-2.7.3.jar', 'jaxb-api-2.3.0.jar', 'lz4-1.3.0.jar', 'slf4j-api-1.7.21.jar'],
 }
 },
]

Exasol

https://www.exasol.com/de/

JDBC driver: https://docs.exasol.com/db/latest/connect_exasol/drivers/jdbc.htm

[
 {
 'name': 'Exasol',
 'info': 'This is a demo of Exasol',
 'active': True,
 'JDBC': {
 'driver': 'com.exasol.jdbc.EXADriver',
 'url': 'jdbc:exa:localhost:8888;schema=schema',
 'auth': ['user', 'password'],
 'jar': 'jars/exajdbc.jar'
 }
 },
]

HEAVY.AI

OmniSci

https://www.heavy.ai/

JDBC driver: https://search.maven.org/artifact/com.omnisci/omnisci-jdbc/5.10.0/jar

[
 {
 'name': 'OmniSci',
 'info': 'This is a demo of OmniSci',
 'active': True,
 'JDBC': {
 'driver': 'com.omnisci.jdbc.OmniSciDriver',
 'url': 'jdbc:omnisci:localhost:6274:omnisci',
 'auth': ['user', 'password'],
 'jar': ['omnisci-jdbc-5.5.0.jar', 'libthrift-0.13.0.jar', 'commons-codec-1.9.jar', 'commons-logging-1.2.jar', 'guava-19.0.jar', 'httpclient-4.5.2.jar', 'httpcore-4.4.4.jar', 'httpmime-4.5.2.jar', 'jackson-annotations-2.7.0.jar', 'jackson-core-2.7.3.jar', 'jackson-databind-2.7.3.jar', 'jaxb-api-2.3.0.jar', 'lz4-1.3.0.jar', 'slf4j-api-1.7.21.jar']
 }
 },
]

IBM DB2

https://www.ibm.com/products/db2-database

JDBC driver: https://www.ibm.com/support/pages/db2-jdbc-driver-versions-and-downloads

[
 {
 'name': 'DB2',
 'info': 'This is a demo of DB2',
 'active': True,
 'JDBC': {
 'driver': 'com.ibm.db2.jcc.DB2Driver',
 'url': 'jdbc:db2://localhost:50000/database:currentSchema=schema',
 'auth': ['user', 'password'],
 'jar': 'jars/db2jcc4.jar'
 }
 },
]

MariaDB

https://mariadb.com/

JDBC driver: https://mariadb.com/kb/en/about-mariadb-connector-j/

[
 {
 'name': 'MariaDB',
 'info': 'This is a demo of MariaDB',
 'active': True,
 'JDBC': {
 'driver': 'org.mariadb.jdbc.Driver',
 'url': 'jdbc:mariadb://localhost:3306/database',
 'auth': ['user', 'password'],
 'jar': 'jars/mariadb-java-client-2.4.0.jar'
 }
 },
]

MariaDB Columnstore

https://mariadb.com/kb/en/mariadb-columnstore/

JDBC driver: https://mariadb.com/kb/en/about-mariadb-connector-j/

[
 {
 'name': 'MariaDB Columnstore',
 'info': 'This is a demo of MariaDB Columnstore',
 'active': True,
 'JDBC': {
 'driver': 'org.mariadb.jdbc.Driver',
 'url': 'jdbc:mariadb://localhost:3306/database',
 'auth': ['user', 'password'],
 'jar': 'jars/mariadb-java-client-2.4.0.jar'
 }
 },
]

MonetDB

https://www.monetdb.org/

JDBC driver: https://www.monetdb.org/downloads/Java/

[
 {
 'name': 'MonetDB',
 'info': 'This is a demo of MonetDB',
 'active': True,
 'JDBC': {
 'driver': 'nl.cwi.monetdb.jdbc.MonetDriver',
 'url': 'jdbc:monetdb://localhost:50000/database?so_timeout=10000',
 'auth': ['user', 'password'],
 'jar': 'jars/monetdb-jdbc-2.29.jar',
 }
 },
]

MS SQL Server

https://www.microsoft.com/en-us/sql-server

JDBC driver: https://github.com/microsoft/mssql-jdbc

[
 {
 'name': 'MS SQL Server',
 'info': 'This is a demo of MS SQL Server',
 'active': True,
 'JDBC': {
 'driver': 'com.microsoft.sqlserver.jdbc.SQLServerDriver',
 'url': 'jdbc:sqlserver://localhost:1433;databaseName=database',
 'auth': ['user', 'password'],
 'jar': 'mssql-jdbc-8.2.2.jre8.jar'
 }
 },
]

MySQL

https://www.mysql.com/

JDBC driver: https://dev.mysql.com/downloads/connector/j/

[
 {
 'name': 'MySQL',
 'info': 'This is a demo of MySQL',
 'active': True,
 'JDBC': {
 'driver': 'com.mysql.cj.jdbc.Driver',
 'url': 'jdbc:mysql://localhost:3306/database?serverTimezone=Europe/Berlin',
 'auth': ['user', 'password'],
 'jar': 'jars/mysql-connector-java-8.0.13.jar'
 },
 },
]

Oracle DB

https://www.oracle.com/database/technologies/

JDBC driver: https://www.oracle.com/database/technologies/appdev/jdbc.html

[
 {
 'name': 'Oracle DB',
 'info': 'This is a demo of Oracle DB',
 'active': True,
 'JDBC': {
 'driver': 'oracle.jdbc.driver.OracleDriver',
 'url': 'jdbc:oracle:thin:@{localhost:1521',
 'auth': ['user', 'password'],
 'jar': 'ojdbc8.jar'
 }
 },
]

PostgreSQL

https://www.postgresql.org/

JDBC driver: https://jdbc.postgresql.org/

[
 {
 'name': 'PostgreSQL',
 'info': 'This is a demo of PostgreSQL',
 'active': True,
 'JDBC': {
 'driver': 'org.postgresql.Driver',
 'url': 'jdbc:postgresql://localhost:5432/database',
 'auth': ['user', 'password'],
 'jar': 'jars/postgresql-42.2.5.jar'
 }
 },
]

SAP HANA

https://www.sap.com/products/hana.html

JDBC driver: https://mvnrepository.com/artifact/com.sap.cloud.db.jdbc/ngdbc

[
 {
 'name': 'SAP HANA',
 'info': 'This is a demo of SAP HANA',
 'active': True,
 'JDBC': {
 'driver': 'com.sap.db.jdbc.Driver',
 'url': 'jdbc:sap://localhost:39041/HXE?currentSchema=schema',
 'auth': ['user', 'password'],
 'jar': 'jars/ngdbc-2.7.7.jar'
 }
 },
]

SingleStore

https://www.singlestore.com/

JDBC driver: https://mariadb.com/kb/en/about-mariadb-connector-j/

[
 {
 'name': 'SingleStore',
 'info': 'This is a demo of SingleStore',
 'active': True,
 'JDBC': {
 'driver': 'org.mariadb.jdbc.Driver',
 'url': 'jdbc:mariadb://localhost:3306/database',
 'auth': ['user', 'password'],
 'jar': 'mariadb-java-client-2.4.0.jar'
 }
 },
]

MemSQL

https://www.singlestore.com/

JDBC driver: https://mariadb.com/kb/en/about-mariadb-connector-j/

[
 {
 'name': 'MemSQL',
 'info': 'This is a demo of MemSQL',
 'active': True,
 'JDBC': {
 'driver': 'org.mariadb.jdbc.Driver',
 'url': 'jdbc:mariadb://localhost:3306/database',
 'auth': ['user', 'password'],
 'jar': 'mariadb-java-client-2.4.0.jar'
 }
 },
]

TimescaleDB

https://www.timescale.com/

JDBC driver: https://jdbc.postgresql.org/

[
 {
 'name': 'TimescaleDB',
 'info': 'This is a demo of TimescaleDB',
 'active': True,
 'JDBC': {
 'driver': 'org.postgresql.Driver',
 'url': 'jdbc:postgresql://localhost:5432/database',
 'auth': ['user', 'password'],
 'jar': 'jars/postgresql-42.2.5.jar'
 }
 },
]

Vertica

https://www.vertica.com/

JDBC driver: https://www.vertica.com/download/vertica/client-drivers/

[
 {
 'name': 'Vertica',
 'info': 'This is a demo of Vertica',
 'active': True,
 'JDBC': {
 'driver': "com.vertica.jdbc.Driver",
 'url': 'jdbc:vertica://localhost:5433/database',
 'auth': ["user", "password"],
 'jar': "jars/vertica-jdbc-11.1.0-0.jar"
 },
 },
]

Footnotes

 Evaluation

Evaluation

After an experiment has finished, the results can be evaluated.
We show here some example evaluations to illustrate what is possible.

Example Evaluations

Some example evaluations

	Global Metrics

	average position

	latency and throughput

	ingestion

	hardware metrics

	host metrics

	Drill-Down Timers

	relative position

	average times

	Slices of Timers

	heatmap of factors

	Drill-Down Queries

	total times

	normalized total times

	latencies

	throughputs

	sizes of result sets

	errors

	warnings

	Slices of Queries

	latency and throughput

	hardware metrics

	timers

	Slices of Queries and Timers

	statistics - measures of tendency and dispersion, sensitive and insensitive to outliers

	plots of times

	box plots of times

	summarizing and exhaustive latex reports containing further data like

	precision and identity checks of result sets

	error messages

	warnings

	benchmark times

	experiment workflow

	initialization scripts

	an interactive inspection tool

	a Latex report containing most of these

Informations about DBMS

 Dashboard

Dashboard

The dashboard helps in interactive evaluation of experiment results.

 Inspector

Inspector

See the rendered example[#1] for more details.

Debug Tool

There is a debug tool, that helps to analyze result folders: python evaluate.py -h

usage: evaluate.py [-h] [-r RESULT_FOLDER] [-e EXPERIMENT] [-q QUERY] [-c CONNECTION] [-n NUM_RUN] [-d] [-rt] {resultsets,errors,warnings,query}

A debug tool for DBMSBenchmarker. It helps to analyze a result folder. It depends on the evaluation cube, so that cube must have been created before.

positional arguments:
 {resultsets,errors,warnings,query}
 show debug infos about which part of the outcome

optional arguments:
 -h, --help show this help message and exit
 -r RESULT_FOLDER, --result-folder RESULT_FOLDER
 folder for storing benchmark result files, default is given by timestamp
 -e EXPERIMENT, --experiment EXPERIMENT
 code of experiment
 -q QUERY, --query QUERY
 number of query to inspect
 -c CONNECTION, --connection CONNECTION
 name of DBMS to inspect
 -n NUM_RUN, --num-run NUM_RUN
 number of run to inspect
 -d, --diff show differences in result sets
 -rt, --remove-titles remove titles when comparing result sets

It depends on the evaluation cube. In case, it can be generated by dbmsbenchmarker -e yes -r 1647993954 read for example for experiment 1647993954.

Show Queries

We can take a look at the actual queries that have been sent: python evaluate.py -e 1647993954 -q 1 -n 0 query

This shows the query string for query number 2, first run.

Show Result Sets

We can take a look at the actual queries that have been sent: python evaluate.py -e 1647993954 -q 2 resultsets

This shows the query string for query number 2.

Show Errors

We can take a look at the actual queries that have been sent: python evaluate.py -e 1647993954 errors

Show Warnings

We can take a look at the actual queries that have been sent: python evaluate.py -e 1647993954 warnings

Footnotes

[#1]
https://beuth-erdelt.github.io/DBMS-Benchmarker/Evaluation-Demo.html

 Contributing to DBMSBenchmarker

Contributing to DBMSBenchmarker

You would like to contribute? Great!

Some things that you can help on include:

	New Workloads: The example/ folder includes the TPC-H and TPC-DS (reading) queries in various dialects. We are interested in adding other relevant workloads.

	Evaluation Tools: The dashboard contains some important prepared charts. However, adding functionality and keeping up to date with Dash could use some help.

	Documentation: If a point in the documentation is unclear, we look forward to receiving tips and suggestions for improvement.

	Testing: If the behavior is not as expected and you suspect a bug, please report it to our issue tracker[#1].

	Use Cases: If you have had any experiences with peculiarities, mistakes, ambiguities or oddities or particularly beautiful cases etc., we are interested in hearing about them and passing them on to others.

Non-code contributions

Even if you don’t feel ready or able to contribute code, you can still help out. There always things that can be improved on the documentation (even just proof reading, or telling us if a section isn’t clear enough).

Code contributions

We welcome pull requests to fix bugs or add new features.

Licensing

In your git commit and/or pull request, please explicitly state that you agree to your contributions being licensed under “GNU Affero General Public License v3”.

Git Usage

If you are planning to make a pull request, start by creating a new branch with a short but descriptive name (rather than using your master branch).

Coding Conventions

DBMSBenchmarker tries to follow the coding conventions laid out in PEP8 and PEP257

	http://www.python.org/dev/peps/pep-0008/

	http://www.python.org/dev/peps/pep-0257/

Testing

Any new feature or functionality will not be accepted without tests.
Likewise for any bug fix, we encourage including an additional test.

Footnotes

[#1]
https://github.com/Beuth-Erdelt/DBMS-Benchmarker/issues

 Index

Index

 Overview

Overview

This documentation contains

	an example of how to perform a TPC-H-like Benchmark from a command line

	a list of the key features

	an example of the basic usage in Python

	an illustration of the concepts

	an illustration of the evaluations

	a description of the options and configurations

	more extensive examples of using the cli tool

	some use-cases and test scenarios

	examples of how to use the interactive inspector

	examples of how to use the interactive dashboard

In Python we basically use the benchmarker as follows:

from dbmsbenchmarker import *

tell the benchmarker where to find the config files
configfolder = "./config"
tell the benchmarker where to put results
resultfolder = "/results"

get a benchmarker object
dbms = benchmarker.benchmarker(result_path=resultfolder)
dbms.getConfig(configfolder)

tell the benchmarker which fixed evaluations we want to have (line plot and box plot per query)
dbms.reporter.append(benchmarker.reporter.ploter(dbms))
dbms.reporter.append(benchmarker.reporter.boxploter(dbms))

start benchmarking
dbms.runBenchmarks()

print collected errors
dbms.printErrors()

get unique code of this experiment
code = dbms.code

generate inspection object
evaluate = inspector.inspector(resultfolder)

load this experiment into inspector
evaluate.load_experiment(code)

get latency of run (measures and statistics) of first query
df_measure, df_statistics = evaluate.get_measures_and_statistics(1, type='latency', name='run')

There also is a command line interface for running benchmarks and generation of reports.

Footnotes

 <no title>

 {include} ../README.md

Footnotes

 OLD: Usage

OLD: Usage

Featured Usage for Benchmarking

This tool can be used to

	run benchmarks

	continue aborted benchmarks

	rerun benchmarks for one fixed query and/or one fixed DBMS

	add benchmarks for more queries or for more DBMS

	read finished benchmarks

Basically this can be done running dbmsbenchmarker run or dbmsbenchmarker continue with additional parameters.

Run benchmarks

python3 benchmark.py run -f test generates a folder containing result files: csv of benchmarks per query.
The example uses test/connections.config and test/queries.config as config files.

Example: This produces a folder containing

connections.config
queries.config
protocol.json
query_1_connection.csv
query_1_execution.csv
query_1_transfer.csv
query_2_connection.csv
query_2_execution.csv
query_2_transfer.csv
query_3_connection.csv
query_3_execution.csv
query_3_transfer.csv

where

	connections.config is a copy of the input file

	queries.config is a copy of the input file

	protocol.json: JSON file containing error messages (up to one per query and connection), durations (per query) and retried data (per query)

	query_n_connection.csv: CSV containing times (columns) for each dbms (rows) for query n - duration of establishing JDBC connection

	query_n_execution.csv: CSV containing times (columns) for each dbms (rows) for query n - duration of execution

	query_n_transfer.csv: CSV containing times (columns) for each dbms (rows) for query n - duration of data transfer

Read stored benchmarks

python3 benchmark.py read -r 12345 reads files from folder 12345containing result files and shows summaries of the results.

Continue benchmarks

python3 benchmark.py continue -r 12345 -g yes reads files from folder 12345 containing result files and continues to perform possibly missing benchmarks.
This is useful if a run had to be stopped. It continues automatically at the first missing query.
It can be restricted to specific queries or connections using -q and c resp.
The example uses 12345/connections.config and 12345/queries.config as config files.

Continue benchmarks for more queries

You would go to a result folder, say 12345, and add queries to the query file.
python3 benchmark.py continue -r 12345 -g yes then reads files from folder 12345 and continue benchmarking the new (missing) queries.

Do not remove existing queries, since results are mapped to queries via their number (position). Use ``active`` instead.

Continue benchmarks for more connections

You would go to a result folder, say 12345, and add connections to the connection file.
python3 benchmark.py continue -r 12345 -g yes then reads files from folder 12345 and continue benchmarking the new (missing) connections.

Do not remove existing connections, since their results would not make any sense anymore. Use ``active`` instead.

Rerun benchmarks

python3 benchmark.py run -r 12345 -g yes reads files from folder 12345 containing result files and performs benchmarks again.
It also performs benchmarks of missing queries.
It can be restricted to specific queries or connections using -q and c resp.
The example uses 12345/connections.config and 12345/queries.config as config files.

Rerun benchmarks for one query

python3 benchmark.py run -r 12345 -g yes -q 5 reads files from folder 12345containing result files and performs benchmarks again.
The example uses 12345/connections.config and 12345/queries.config as config files.
In this example, query number 5 is benchmarked (again) in any case.

Rerun benchmarks for one connection

python3 benchmark.py run -r 12345 -g yes -c MySQL reads files from folder 12345containing result files and performs benchmarks.
The example uses 12345/connections.config and 12345/queries.config as config files.
In this example, the connection named MySQL is benchmarked (again) in any case.

Footnotes

 <no title>

 [image: Alternative text]
Footnotes

_images/dbms.png
